Gene expression profiling of splenic monocytes from TCL1-AT mice and WT controls
Ontology highlight
ABSTRACT: Analysis of the effect of CLL development on differentation and gene expression of splenic monocytes. C57BL/6 mice were transplanted with murine CLL cells from Eµ-TCL1 mice and after 6 weeks total RNA was isolated from splenic monocytes from leukemic mice and matched WT controls.
Project description:The function of ID4 in CLL development was studied in vivo using TCL1 transgenic mouse model that develop leukemia similar to human CLL. TCL1 mice with ID4 single knockout gene have accelerated CLL progression. Results from the animal study suggest ID4 as a tumor suppressor gene that might regulate cell proliferation and apoptosis in B lymphocytes. Gene expression in CD19-positive splenic B cells collected from 1-month old ID4+/-TCL1-tg and ID4+/+TCL1-tg mice was compared by microarray, the goal is to find ID4-regulated genes involved in CLL development.
Project description:RNA from CD14 positive monocytes isolated from CLL patient PBMCs on day 0 and from MDCs from CLL PBMCs cultured for seven days were hybridised to an RNA microarray to identify differences between the MDCs derived from sensitive or resistant CLL patients and differences in MDCs pre and post in vitro culture. Total RNA isolated from CD14 positive monocytes from 2 sensitive and 2 resistant CLL patients and total RNA isolated from MDCs from 4 sensitive and 3 resistant CLL patients
Project description:Activated BCR signaling in Murine CLL leukemia cells responsive to autoantigen phosphatidylcholine Murine CLL cells obtained from spleen and peritoneum were compared for the genetic signatures associated with autoantigen responsiveness
Project description:Tcl1 tg mice develop a chronic lymphocytic leukemia (CLL) -like disease. To investigate the contribution of the adhesion molecule CD44 to CLL pathophysiology, we developed a CD19Cre CD44flox/flox Tcl1 tg mouse with a B cell specific CD44 deficiency (CD44ΔB Tcl1 tg). We used the Clariom S mouse microarray from Affymetrix to investigate transcriptional differeneces between Tcl1 tg and CD44ΔB Tcl1 tg mice
Project description:The function of ID4 in CLL development was studied in vivo using TCL1 transgenic mouse model that develop leukemia similar to human CLL. TCL1 mice with ID4 single knockout gene have accelerated CLL progression. Results from the animal study suggest ID4 as a tumor suppressor gene that might regulate cell proliferation and apoptosis in B lymphocytes.
Project description:B cell chronic lymphocytic leukemia (CLL) is often preceded by a benign monoclonal or oligoclonal CD5+ B cell lymphocytosis. We have generated transgenic mice expressing a catalytically inactive, dominant-negative recombination activating gene 1 (dnRAG1 mice) in the periphery. These animals develop an early-onset indolent CD5+ B cell lymphocytosis, caused in part by a defect in secondary V(D)J rearrangements initiated to alter autoreactive B cell receptor specificity. Hypothesizing that the CD5+ B cells accumulating in dnRAG1 mice represent a CLL precursor, we crossed dnRAG1 mice with CLL-prone Eµ-TCL1 mice to determine whether dnRAG1 expression in Eµ-TCL1 mice accelerates the onset of CLL-like disease. We find that CD5+ B cell expansion and CLL progression occurs more rapidly and uniformly in double-transgenic mice (DTG mice) compared to Eµ-TCL1 mice, but with similar phenotypic and leukemogenic features. To gain insight into genes or pathways responsible for CD5+ B cell accumulation in the transgenic mice, we performed comparative gene expression profiling studies using normal and CD5+ B cells isolated from wild-type and transgenic mice at either 12 weeks of age (pre-leukemia) or at CLL onset in DTG mice (using age-matched wild-type and single-transgenic mice as controls). These analyses confirm the upregulation of tolerogenic genes in CD5+ B cells and reveal a possible role for prolactin signaling in the regulation of receptor editing. This study suggests that a failure to remodel B cell antigen receptor genes in response to autoreactivity may promote the benign accumulation of CD5+ B cells, which may then be subjected to secondary genetic lesions that promote CLL progression. dnRAG1 mice were bred to Eµ-TCL1 mice to obtain cohorts of wild-type (WT), single-transgenic (dnRAG1 and Eµ-TCL1), and DTG mice. Splenic CD19+B220hiCD5- B cells from WT mice or CD19+CD5+ B cells from transgenic mice were purified using fluorescence activated cell sorting (FACS). Biotin end-labeled cDNA prepared from the sorted cells was hybridized to Mouse Gene 1.0 ST Arrays. These experiments were performed two independent times: once with a cohort of 12-week-old mice, and once with older mice (>34 weeks old) consisting of two ill DTG mice and their age-matched counterparts. At least two biological replicates were used where possible.
Project description:To assess the contribution of p66Shc deficiency to the pathogenesis of CLL we introduced a p66Shc null allele into the Emu-TCL1 mouse model of human CLL. The impact of homozygous p66Shc deletion on the pattern of gene expression in leukemic cells from the two mouse strains was compared by DNA microarray, highlighting gene candidates that were subsequently validated and assessed functionally in vitro and in vivo.