Histone modifications in the marine diatom Phaeodactylum tricornutum
Ontology highlight
ABSTRACT: Genome wide mapping of five histone marks (H3K4me2, H3K9me2, H3K9me3, H3K27me3 and H3AcK9/14) as well as nucleosome occupancy was generated by chromatin immunoprecipitation followed by deep sequencing. To gain insights into the dynamic nature of the P. tricornutum epigenome in response to an environmental cue, we analyzed the impact of nitrate depletion. We specifically examined three histone modifications (H3K4me2, H3K9/14Ac and H3K9me3) using Chip-seq. Examination of 5 different histone modifications.
Project description:The centromere is defined by the presence of a centromere-specific histone H3 variant, CENH3. Establishment and maintenance of the centromeric chromatin (CEN chromatin) is determined by poorly understood epigenetic mechanisms. Interestingly, CEN chromatin in several eukaryotes showed euchromatic characteristics although being embedded within pericentromeric heterochromatin. Specifically, H3K4me2 appeared to be a unique histone modification mark associated with animal centromeres. We developed a genomic tiling array for four fully sequenced rice centromeres. A ChIP-chip approach was used to study the patterns of several euchromatic histone modification marks, including H3K4me2, H3K4me3, H3K36me3, and H3K4K9a, associated with rice centromeres. We demonstrate that the CENH3 subdomains within the four centromeres are depleted with the four histone H3 marks. The vast majority of the four histone marks were associated with the genes located in the H3 subdomains within the centromeric cores. Genes in the centromeres showed similar histone modification patterns as those located outside of the centromeres. Thus, the euchromatic characteristics of rice CEN chromatin are trademarks of the transcribed sequences embedded in the H3 subdomains of the centromeres. We propose that the constitutively expressed genes located in rice centromeres may provide a barrier for loading of CENH3 into the H3 subdomains. The separation of CENH3 into the H3 subdomains is favorable for the three dimensional structure and its associated function of rice centromeres. We developed a genomic tiling array that covers four rice centromeres (Cen4, Cen5, Cen7, and Cen8) using the NimbleGen 3x720K array based on the NimbleGen HD2 platform. We used four antibodies (H3K4me3, H3K4me2, H3K36me3, H3K4K9ac) to perform ChIP-chip experiments. ChIP was conducted using leaf tissue from two-week old rice seedlings. We have 3 biological replicates for each antibody and 6 technological replicates of hybridization with position exchange on the array. Thus, each histone modification included 18 hybridization experiments.
Project description:We found that the non-essential amino acid L-proline (L-Pro) acts as a signaling molecule that promotes the conversion of embryonic stem cells (ESCs) into mesenchymal-like, spindle-shaped, highly motile, invasive pluripotent stem cells.This embryonic stem cell-to-mesenchymal-like transition (esMT) is accompanied by a genome-wide remodeling of the H3K9me3 and H3K36me3 histone marks. Examination of 2 different histone modifications in untreated ESCs and L-Pro treated ESCs
Project description:We interrogated the genome-wide occupancy of histone modifications and RNA polymerase II at several stages of an mouse embryonic stem cell to cardiomyocyte directed differentiation protocol. These four stages represent timepoints when differentiating cultures are enriched for embryonic stem cells (ESC), mesodermal cells (MES), cardiac precursors (CP), or cardiomyocytes (CM) respectively. This study revealed many dynamic patterns of histone modifications during differentiation that are coordinated with stage-specific gene expression including a novel preactivation chromatin pattern found at genes associated with cardiac function. In addition, this study identified distal enhancer elements and enriched transcription factor motifs within enhancer regions for each stage of differentiation, which were used to predict novel transcription regulatory networks. ChIP-seq analysis of histone modifications and RNA polymerase II at 4 stages of directed cardiac differentiation of mouse embryonic stem cells. Each stage in biological duplicate or triplicate
Project description:Genome wide mapping of five histone marks (H3K4me2, H3K9me2, H3K9me3, H3K27me3 and H3AcK9/14) as well as nucleosome occupancy was generated by chromatin immunoprecipitation followed by deep sequencing. To gain insights into the dynamic nature of the P. tricornutum epigenome in response to an environmental cue, we analyzed the impact of nitrate depletion. We specifically examined three histone modifications (H3K4me2, H3K9/14Ac and H3K9me3) using Chip-seq.
Project description:A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4+ T cells that produce Th2 cytokines (Th2 cells). By mapping genome-wide histone modification profiles of T cell subsets isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human Th1 and Th2 cells. In addition, we discovered disease-specific T cell enhancers that differ between healthy and asthmatic individuals. Examination of H3K4me2 histone modifications in 3 human cell types in 11 healthy and 12 asthmatic individuals .
Project description:ChIP-seq is used to map transcription factor occupancy and generate epigenetic profiles genome-wide. The requirement of nano-scale ChIP DNA for generation of sequencing libraries has impeded ChIP-seq on in vivo tissues of low cell numbers. We describe a robust, simple and scalable methodology for ChIP-seq of low-abundant cell populations, reliably amplifying 50 pg of ChIP DNA, corresponding to ~30,000 input cells for transcription factor ChIP (CEBPA) and 3,000 cells for histone mark ChIP (H3K27me3). This represents a significant advance compared to existing technologies, which involve complex and time-consuming steps of pre-amplification, making them susceptible to experimental biases. ChIP-seq of histone modifications H3K27me3 (2 biological replicates (I+II) , 2 ng input), H3K4me3 (2 biological replicates (II+III), 2 ng input), transcription factor CEBPA (2 biological replicates (I+II), 300 pg input), 4 diluted CEBPA libraries (pool of ChIP from 3 biol. replicates (I+II+III) 3x 100 pg input, 1x 50 pg). Additonal ChIP-seq using 10,000 cells, 1 biological replicate of each H3K4me3 and CEBPA.
Project description:Genome-wide analysis of histone modification (H2AZ, H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3 and H3K9me3), protein-DNA binding (TAF1, P300, Pou5f1 and Nanog), cytosine methylation and transcriptome data in mouse and human ES cells and pig iPS cells We generated histone modification data (H2AZ, H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3 and H3K9me3) and protein-DNA binding data (TAF1, P300, Pou5f1 and Nanog) using Chromatin Immunoprecipitation followed by short sequencing (ChIP-seq), cytosine methylation data using methylated DNA immunoprecipitation followed by sequencing (MeDIP-seq) and DNA digestion by methyl-sensitive restriction enzymes followed by sequencing (MRE-seq), transcriptome data with RNA short sequencing (RNA-seq) in human embryonic stem cells, mouse embryonic stem cells, pig induced pluripotent stem cells and mouse embryonic stem cells under activin-A-induced-differentiation. Examination of 8 histone modifications, 4 protein-DNA binding, cytosine methylation and transcriptome in human embryonic stem cells, mouse embryonic stem cells, pig induced pluripotent stem cells and mouse embryonic stem cells under activin-A-induced-differentiation.
Project description:ENCODE ChIP-chip study using human myelogenous leukemia cell line K-562 and anti histone H3K4me2 (Abcam; ab7766); H3K4me3 (Abcam; ab8580); H3ac (Upstate; 06-599); H4ac (Upstate; 06-866); Histone H2B (Abcam: ab1790) and Histone H3 (Abcam: ab1791) antibodies. Each antibody experiment was conducted in three biological replicates, with two technical replicates performed for each biological replicate
Project description:Histone profile for wild type MEF and secondary MEF with Dox-inducible vectors for Klf4, Sox2 and Oct4 (KSO). ChIP-Seq data for H3K4me3, H3K27me3 and H3K9me3