Using RNA Seq to define the regulon of the Pseudomonas aeruginosa transcription factor Anr in low-oxygen colony biofilms.
Ontology highlight
ABSTRACT: Purpose : The goal of this study was to use RNA Seq to define the regulon of the transciption factor Anr by comparing global transcriptional profiles of Pseudomonas aeruginosa strain PAO1 and a clinical isolate with their isogenic ?anr mutants, grown in colony biofilms at 1% oxygen. Methods : mRNA profiles were generated for laboratory strain PAO1 and for a clinical isolate J215, as well as for ?anr derivatives of each strain, in duplicate, by deep sequencing. Strains were grown for 12 hours in colony biofilms at 1% O2, 5% CO2 prior to RNA harvest. Ribosomal and transfer RNAs were removed using the MICROBExpress kit (Life Technologies). mRNA reads were trimmed and mapped to the PAO1 NC_002516 reference genome from NCBI using the ClC Genomics Workbench platform and defaut parameters. mRNA profiles of 12 hour colony biofilms were generated for P. aeruginosa strains PAO1 WT, PAO1 ?anr, clinical isolate J215, and J215 ?anr, each in duplicate, by deep sequencing using Illumina HiSeq.
Project description:Purpose : The goal of this study was to use RNA Seq to define the regulon of the transciption factor Anr by comparing global transcriptional profiles of Pseudomonas aeruginosa strain PAO1 and a clinical isolate with their isogenic ∆anr mutants, grown in colony biofilms at 1% oxygen. Methods : mRNA profiles were generated for laboratory strain PAO1 and for a clinical isolate J215, as well as for ∆anr derivatives of each strain, in duplicate, by deep sequencing. Strains were grown for 12 hours in colony biofilms at 1% O2, 5% CO2 prior to RNA harvest. Ribosomal and transfer RNAs were removed using the MICROBExpress kit (Life Technologies). mRNA reads were trimmed and mapped to the PAO1 NC_002516 reference genome from NCBI using the ClC Genomics Workbench platform and defaut parameters.
Project description:Purpose : The goal of this study was to use RNA Seq to validate transcriptional data of two clinical isolates focussing on a subset of 74 transcript that were selected specifically for Nanostring analysis. Methods : mRNA profiles were generated for the clinical isolates FRD1 and CI224_M, in duplicate, by deep sequencing. Strains were grown for 8 hours in LB medium at 37C prior to RNA harvest. Ribosomal RNA was removed using the Ribi-Zero rRNA Removal Kit (Epicentre). mRNA reads were trimmed and mapped to the PAO1 NC_002516 reference genome from NCBI using the ClC Genomics Workbench platform and defaut parameters. mRNA profiles of liquid cultures grown for 8 hours in LB at 37C were generated for P. aeruginosa clinical isolates FRD1 and CI224_M, each in duplicate, by deep sequencing using Illumina NextSeq.
Project description:The TyrR-like enhancer-binding protein GcsR (or PA2449) was shown to regulate the expression of genes required for glycine metabolism. In order to define the regulon of GcsR we compared the transcriptome of a gcsR deletion mutant of P. aeruginosa PAO1 with that of the wild-type using RNA-Seq. Strains were grown under glycine rich conditions (peptone broth) and their transcriptomes were compared using RNA-Seq.
Project description:The aim of this study is to evaluate the evolutionary robustness of the quorum sensing inhibitor (QSI) furanone C-30 for the treatment of P. aeruginosa biofilm infections. We repeatedly exposed P. aeruginosa biofilms to furanone C-30 (with or without tobramycin) in the synthetic cystic fibrosis sputum medium (SCFM2) and characterized the genotype and phenotype of the evolved lineages. P. aeruginosa biofilms were grown in SCFM2 for 24 h after which the treatment in fresh SCFM2 was added to obtain a final concentration of 20 µg/ml tobramycin and 100 µg/ml furanone C-30. The negative control was treated with fresh SCFM2, including the same amount of DMSO (0.25%) as for the biofilms treated with C-30. After 24 h of static incubation at 37°C, biofilms were sonicated and vortexed in order to disintegrate the biofilm aggregates. After each cycle the number of CFU was determined and an aliquot of the culture was stored at -80°C in Microbank vials to allow further tests on the evolved strains. A sample from the treated biofilm was used to prepare a new overnight culture, in order to start a new cycle. For each treatment three independent lineages were established, that were each exposed for 16 cycles. Whole-genome sequencing was performed on the wild type P. aeruginosa PAO1 and on the exposed lineages after 5, 10 and 16 cycles.
Project description:The transcription factor Anr regulates the response to low oxygen in P. aeruginosa and is inhibited by oxygen. We used microarrys to compare gene expression in P. aeruginosa PAO1 wild-type with an isogenic anr mutant in order to determine which transcripts are affected by Anr. We grew P. aeruginosa cells as biofilms on CFBE cells in order to model cystic fibrosis airways infections.
Project description:Five biological repeats of P.aeruginosa PAO1 in the absence of human LL37 and five biological repeats of P.aeruginosa presence of LL37 were grown in mineral medium in continuous-culture flow cells. Microarray experiments were done using microarray slides and protocols from TIGR on cells harvested from the biofilms after 4 days of growth.
Project description:Glycosylation is an abundant post-translational modification of both intracellular and extracellular proteins [1]. The majority of glycans are classified as N-linked chains, where the carbohydrate moiety is attached to asparagine residues, or O-linked chains, most commonly linked to a serine or threonine. N-linked glycosylation is initiated by the oligosaccharyltransferase complex with only two paralogs of the catalytic subunit, whereas O-glycan initiation is more complex. There are several types of O-linked glycosylation, but among the most diverse is the mucin or GalNAc type (hereafter referred to as O-glycosylation). O-glycosylation is initiated by 20 evolutionarily conserved polypeptide GalNAc-transferases (GalNAc-Ts), which catalyze the first step in the O-glycosylation of proteins by adding GalNAc residues to threonine, serine, and tyrosine amino acids (Fig 1A). Each of the GalNAc-Ts are differentially expressed in various tissues and have both distinct and overlapping peptide substrate specificities [2-12]. Thus, the repertoire of GalNAc-Ts expressed in a given cell determines the subset and O-glycosite pattern of glycosylated proteins [13]. Substantial efforts have been made to characterize and predict the substrate specificities of GalNAc-Ts in vitro, but understanding of the in vivo specificities of the individual GalNAc-Ts or their biological functions is limited [13-15]. This lack of insight prevents an understanding of how site-specific O-linked glycosylation affects diseases, such as metabolic disorders, cardiovascular disease, and various malignancies, that have been associated with GalNAc-Ts through genome-wide association studies and other linkage studies [16-26]. Therefore, it is imperative that we establish how O-glycosylation at specific sites in proteins affects protein function. A major task in achieving this goal is to identify the non-redundant biological functions of site-specific O-glycosylation. We and others recently developed new strategies for identifying specific sites on proteins that undergo O-glycosylation in different cell types and tissues [27-31]. Characterization of the O-glycoproteomic landscape in isolated human cells and multiple human cell lines suggests that more than 80 % of all proteins that traffic through the secretory pathway are O-glycoproteins [28, 30]. Probing the non-redundant contributions of individual GalNAc-Ts in cells with and without specific GalNAc-Ts [32-34] has revealed broad substrate specificities for some of the individual isoforms, whereas others seem to have very restricted substrate specificities [33-35]. Assessing all of the mapped O-glycosylation sites to identify associations between O-glycosites and protein annotations, we recently found that O-glycans are over-represented close to tandem repeat regions, protease cleavage sites, within propeptides, and on a select group of protein domains [28, 30, 36]. Although such general associations between the location of O-glycans and protein functions may direct future investigations, the strategy does not define the function of site-specific glycosylation. Further progress in discovering and defining novel functions of site-specific glycosylation events requires direct quantitative analysis of potential biological responses induced by the loss of distinct GalNAc-T isoforms, and such biological responses are not easily observed in single cell culture systems. Instead, more complex model systems can be used to examine and dissect the molecular mechanisms underlying the important biological functions of site-specific glycosylation. We previously used an organotypic tissue model equipped with genetically engineered cells to decipher the function of elongated O-glycans [29]. In the present study, we use the model combined with quantitative O-glycoproteomics and phosphoproteomics to perform open-ended discovery of the biological functions of site-specific glycosylation governed by GalNAc-Ts (Fig 1B). With this combinatorial strategy, we demonstrate that loss of individual GalNAc-T isoforms has distinct phenotypic consequences through their effect on distinct biological pathways, suggesting specific roles during epithelial formation.
Project description:The objective of the current study was to understand the glutaraldehyde resistance mechanisms in P. fluorescens and P. aeruginosa biofilms. Glutaraldehyde is a common biocide used in various industries to control the microbial growth. Recent reports of emergence of glutaraldehyde resistance in several bacterial species motivated this study to understand the genetic factors responsible got glutaraldehyde resistance. Using a combination of phenotypic assays, chemical genetic assays and RNA-seq, we demonstrate that novel efflux pump, polyamine biosynthesis, lipid biosynthesis and phosphonate degradation play significant role in glutaraldehyde resistance and post-glutaraldehyde recovery of Psudomonad biofilms. Examination of P. fluorescens 72 h biofilm transcriptome was elucidated upon exposure to glutaraldehyde. The results were confirmed using qRT--PCR and chemical genetic appraoches in P. fluorescens and P. aeruginosa.
Project description:We found that assassin bugs from the earliest-diverging subfamily of higher Reduviidae (Peiratinae), as well as a subfamily closely related to Triatominae (Stenopodainae) have venom that is highly similar in composition to that produced by previously examined reduviids from Harpactorinae and Reduviinae. This finding suggests that venom composition has been largely stable due to purifying selection among the higher Reduviidae, which is consistent with the ancient origin of venom in the ancestors of Heteroptera 250–300 million years ago (Sunagar and Moran 2015; Walker et al. 2018a). This near homogeneity of venom composition is perhaps surprising considering that reduviid predators have evolved numerous instances of prey specialization and specialized hunting strategies that might be expected to co-evolve with venom. Possibly, further studies focussing on species with more specialized hunting strategies, or different kinds of venom bioactivities, will uncover more nuanced venom adaptations. Alternatively, it is possible that the protease-rich venoms of predatory reduviids are simply well-suited to myriad different hunting strategies. These data are consistent with other examples where venoms are surprisingly similar despite great differences in biology, for example between solitary and eusocial bees. A more detailed picture of venom evolution in Reduviidae would examine venom produced by the early-diverging Phymatine complex as well as venoms of non-reduviid cimicomorphs, prey specialists such as the arachnophagous Emesinae and the myrmecophagous Holoptilinae, and some of the many groups that employ hunting specializations, such as the use of plant resins to catch prey (Hwang and Weirauch 2012). Within Triatominae, examination of saliva produced by additional species from multiple lineages (especially those that switched to blood-feeding independently, if the subfamily is shown to be polyphyletic) and including generalists and specialists on different host taxa and species associated especially with nests and burrows will be informative. The venoms of predatory reduviids such as Zelurus spp. and Opisthacidius spp. that are most closely related to Triatominae, and share some behaviours such as habitation of bird nests by Opisthacidius spp. may also provide more information about the evolution of triatomine saliva.