A CRISPR-based screen identifies genes essential for West Nile virus-induced cell death
Ontology highlight
ABSTRACT: West Nile virus (WNV) causes an acute neurological infection attended by massive neuronal cell death. However, the mechanism(s) behind the virus-induced cell death is poorly understood. Using a library containing 77,406 sgRNAs targeting 20,121 genes, we performed a genome-wide screen using CRISPR/Cas9. HEK 293FT cells were infected with lentivirus expressing sgRNAs and then transfected with a Cas9 expressing construct. WNV infection killed most cells during a 12d selection. Survivor cells were harvested, from which DNA was isolated. The sgRNAs integrated in genome of survivor cells were amplified with PCR. The PCR product was sequenced with Illumina MiSeq to profile the sgRNA population in the survivor cells. Three replicates were conducted. Similarly, a second round of screen was conducted. Among the genes identified, seven genes, EMC2, EMC3, SEL1L, DERL2, UBE2G2, UBE2J2, and HRD1, stood out as having the strongest phenotype, whose knockout conferred strong protection against WNV-induced cell death with two different WNV strains and in three cell lines. Interestingly, knockout of these genes did not block WNV replication. Thus, these appear to be essential genes that link WNV replication to downstream cell death pathway(s). In addition, the fact that all of these genes belong to the endoplasmic reticulum-associated protein degradation (ERAD) pathway suggests that this might be the primary driver of WNV-induced cell death. Examination of sgRNA populations in survival 293FT cells
Project description:West Nile virus (WNV) causes an acute neurological infection attended by massive neuronal cell death. However, the mechanism(s) behind the virus-induced cell death is poorly understood. Using a library containing 77,406 sgRNAs targeting 20,121 genes, we performed a genome-wide screen using CRISPR/Cas9. HEK 293FT cells were infected with lentivirus expressing sgRNAs and then transfected with a Cas9 expressing construct. WNV infection killed most cells during a 12d selection. Survivor cells were harvested, from which DNA was isolated. The sgRNAs integrated in genome of survivor cells were amplified with PCR. The PCR product was sequenced with Illumina MiSeq to profile the sgRNA population in the survivor cells. Three replicates were conducted. Similarly, a second round of screen was conducted. Among the genes identified, seven genes, EMC2, EMC3, SEL1L, DERL2, UBE2G2, UBE2J2, and HRD1, stood out as having the strongest phenotype, whose knockout conferred strong protection against WNV-induced cell death with two different WNV strains and in three cell lines. Interestingly, knockout of these genes did not block WNV replication. Thus, these appear to be essential genes that link WNV replication to downstream cell death pathway(s). In addition, the fact that all of these genes belong to the endoplasmic reticulum-associated protein degradation (ERAD) pathway suggests that this might be the primary driver of WNV-induced cell death.
Project description:Unbiased forward genetic screens to identify host factors for DENV1 and JEV in 293FT cells. Unbiased forward genetic screens to identify host factors for HCoV-229E in Huh7.5.1 cells.
Project description:RNA-guided genome editing with the CRISPR-Cas9 system has great potential for basic and clinical research, but the determinants of targeting specificity and the extent of off-target cleavage remain insufficiently understood. Using chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), we mapped genome-wide binding sites of catalytically inactive Cas9 (dCas9) in HEK293T cells, in combination with 12 different single guide RNAs (sgRNAs). The number of off-target sites bound by dCas9 varied from ~10 to >1,000 depending on the sgRNA. Analysis of off-target binding sites showed the importance of the PAM-proximal region of the sgRNA guiding sequence and that dCas9 binding sites are enriched in open chromatin regions. When targeted with catalytically active Cas9, some off-target binding sites had indels above background levels in a region around the ChIP-seq peak, but generally at lower rates than the on-target sites. Our results elucidate major determinants of Cas9 targeting, and we show that ChIP-seq allows unbiased detection of Cas9 binding sites genome-wide 1.sgRNA1-6 binding sites were identified with ChipSeq by using HA antibody (there are 2 replicates for sgRNA1-3, one sample for sgRNA4-6,one control without sgRNA) 2.PCR products which amplifies " off-target genomic sites" were deep sequenced in the presence of WT Cas9+sgRNA or WT Cas9 alone( unique adaptor was used for each sgRNA and mixed for multiplex run)
Project description:Analysis of Cas9/sgRNA mutagenic activity at a variety of loci in zebrafish. Each loci has a control, where no Cas9/sgRNA were injected. This is amplicon sequencing with Illumina, after PCR amplification. Data was processed with ampliCan R package version 1.1.1.
Project description:The goal of this experiment was to get deep into TRIM28 biological function in malignant pleural mesothelioma. To this end MSTO-211H cell line was infected by two different sgRNAs targeting TRIM28 and a non-targeting sgRNA as control. Two independent experiments were performed.RNA was collected 7 days after infection and changes in gene expression were analyzed by mRNA-seq.
Project description:The clustered regularly interspaced short palindromic repeat (CRISPR)-associated enzyme Cas9 is an RNA-guided nuclease that has been widely adapted for genome editing in eukaryotic cells. However, the in vivo target specificity of Cas9 is poorly understood and most studies rely on in silico predictions to define the potential off-target editing spectrum. Using chromatin immunoprecipitation followed by sequencing (ChIP-seq), we delineate the genome-wide binding panorama of catalytically inactive Cas9 directed by two different single guide (sg) RNAs targeting the Trp53 locus. Cas9:sgRNA complexes are able to load onto multiple sites with short seed regions adjacent to 5’NGG3’ protospacer adjacent motifs (PAM). Examination of dmCas9 binding sites using two Trp53 targeting sgRNAs in Arf -/- MEF cell line (mouse).
Project description:Analysis of Cas9/sgRNA mutagenic activity at a variety of loci in zebrafish. Each loci has a control, where no Cas9/sgRNA were injected. This is amplicon sequencing with Illumina, after PCR amplification. Data was processed with ampliCan R package version 1.1.1.
Project description:Analysis of Cas9/sgRNA mutagenic activity at a variety of loci in zebrafish. Each loci has a control, where no Cas9/sgRNA were injected. This is amplicon sequencing with Illumina, after PCR amplification. Data was processed with ampliCan R package version 1.1.1.
Project description:Analysis of Cas9/sgRNA mutagenic activity at a variety of loci in zebrafish. Each loci has a control, where no Cas9/sgRNA were injected. This is amplicon sequencing with Illumina, after PCR amplification. Data was processed with ampliCan R package version 1.1.1.
Project description:Analysis of Cas9/sgRNA mutagenic activity at a variety of loci in zebrafish. Each loci has a control, where no Cas9/sgRNA were injected. This is amplicon sequencing with Illumina, after PCR amplification. Data was processed with ampliCan R package version 1.1.1.