Effects of long-term intake of RPS on gene expression in the colon and liver of pigs
Ontology highlight
ABSTRACT: To investigate effects of long-term intake of RPS on gene expression in the colon and liver of pigs,thirty-six Duroc × Landrace × Large White growing barrows were randomly allocated to corn starch (CS) and RPS groups. Each group consisted of six replicates (pens), with three pigs per pen. Pigs in the CS group were offered a corn/soybean-based diet, while pigs in the RPS group were put on a diet in which 230 g/kg (growing period) or 280 g/kg (finishing period) purified corn starch was replaced with purified RPS during a 100-day trial. Liver transcriptomic results showed that the expression of CD36, CPT1B and ACADM was down-regulated, while AGPAT4, GPAT, FABP1 and FABP3 were up-regulated by the RPS diet, indicating a decrease in fatty acid intake and synthesis, and an increase in fatty acid oxidation and glycerophospholipid synthesis.Analysis of the colonic transcriptome profiles revealed that the RPS diet changed the colonic expression profile of the host genes mainly involved in immune response pathways. RPS significantly increased proinflammartory cytokine IL-1? gene expression and suppressed genes involved in lysosome. Thirty-six Duroc × Landrace × Large White growing barrows (70 days of age, 23.78 ± 1.87 kg) were randomly allocated to two groups, each group consisting of three pigs per pen, and six replicates. Pigs in the control group were offered a corn/soybean-based diet, while 230 g/kg purified corn starch (CS) was replaced with purified RPS in the RPS diet group. Diets were formulated according to the nutrient requirements of the National Research Council (1998). When animals reached the age of 120 days, diets were adapted to the nutrient requirements of the animals (finishing diet) and the amount of purified starch increased to 280 g of CS or RPS per kilogram of feed. Pigs had unlimited access to feed and water throughout the experimental period, which consisted of two 50-day trials in which the pigs consumed the growing diet (days 0-50) and finishing diet (days 51-100), respectively. On day 100, one pig from each replicate that met the target slaughter weight (105 to 110 kg) was slaughtered. The liver and colonic mucosa tissues were collected and preserved in liquid nitrogen for gene expression analysis.
Project description:To investigate effects of long-term intake of RPS on gene expression in the colon and liver of pigs,thirty-six Duroc × Landrace × Large White growing barrows were randomly allocated to corn starch (CS) and RPS groups. Each group consisted of six replicates (pens), with three pigs per pen. Pigs in the CS group were offered a corn/soybean-based diet, while pigs in the RPS group were put on a diet in which 230 g/kg (growing period) or 280 g/kg (finishing period) purified corn starch was replaced with purified RPS during a 100-day trial. Liver transcriptomic results showed that the expression of CD36, CPT1B and ACADM was down-regulated, while AGPAT4, GPAT, FABP1 and FABP3 were up-regulated by the RPS diet, indicating a decrease in fatty acid intake and synthesis, and an increase in fatty acid oxidation and glycerophospholipid synthesis.Analysis of the colonic transcriptome profiles revealed that the RPS diet changed the colonic expression profile of the host genes mainly involved in immune response pathways. RPS significantly increased proinflammartory cytokine IL-1β gene expression and suppressed genes involved in lysosome.
Project description:The aim of this study was to investigate whether long term intake of pea fiber would improve colonic barrier, bacterial profile and alter colonic gene expression using DNA microarray. Fifty weaned pigs were randomly allocated into 2 groups receiving control and fibrous diet with inclusion of pea fiber from weaning age until d 160. The two diets had similar nutrient levels. Pigs fed pea fiber diet (PF diet) had markedly decreased overall average daily feed intake (ADFI) and Feed:Gain in growing and finishing period (P<0.05). In addition, long term intake of PF diet induced deeper crypt (+50 %, P<0.05), increased protein expression of colonic mucin and sIgA (+13~16 %, P<0.05). Resulting from the increased lactobacillus content (P<0.05), moreover, pigs fed PF diet had significantly higher concentration of colonic total short chain fatty acid (SCFA) and acetic acid. DNA microarray results indicated that feeding PF diet induced alterations in the expression of colonic cancer, immune response and lipid metabolism-related genes, as well as genes involved in signal pathway such as intestinal immune network for IgA production, PPAR signaling pathway and nutrient metabolism-related pathways. Collectively, our results suggested that long term intake of PF diet would improve colonic health via altering colonic bacteria profile, colonic barriers, immune and metabolism related protein or gene expressions. A total of 50 weaned pigs (Duroc×Landrace×Yorkshire, initial body weight: 7.2±0.5 kg) were randomly allocated to 2 groups with 5 pens each group and 5 pig each pen. Pigs were fed control (Control) and fibrous diets (10~20 % inclusion of pea fiber, PF) from weaning at 28 day to 160 day-old-age, which is subjected to phase feeding by weaning diet (weaning to d 30 post-weaning), growing diet (d 30~90 postweaning) and finishing diet (d 90~160 postweaning) according to their physiological stage. At d 160 postweaning, four pigs each group were selected to be slaughtered for collection of colonic tissues and DNA microarray was applied to the colonic tissues for analysis of gene expression.
Project description:Effects of soy isoflavones, genistein and daidzein, on the hepatic gene expression profile and indices for lipid metabolism were compared in rats. The GeneChip data was normalized and summarized by using SuperNORM data service (Skylight Biotech Inc.). Significance of expressional change among groups was tested by 2-way ANOVA on the normalized CEL data, which was deposited in a tab-separated ASCII text format. Principal components were identified on the summarized gene data. Three groups of rats were fed with an experimental diet containing 2 g/kg of either genistein or daidzein, or a control diet free of isoflavone for 14 days. The basal composition of the experimental diet was (in g/kg): casein, 200; palm oil, 100; corn starch, 150; cellulose, 20; mineral mixture (AIN-93G), 35; vitamin mixture (AIN-93), 10; L-cystine, 3.0; choline bitartrate, 2.0 and sucrose to 1 kg.
Project description:The liver plays a crucial role in energy partitioning and is particularly important for the increased demand from the mammary gland during lactation. The present study identifies genes associated with negative energy balance in lactating mice. We used microarrays to detail the gene expression underlying negative energy balance and identified distinct classes of up-regulated genes. The pregnant mice was fed a high GI diet during and throughout pregnancy until peak lactation (HGI group; n = 5). The second group was fed a low GI diet over the same period (LGI group; n = 5). The HGI diet included 51.4% (W/W basis) of glucose and a gross energy of 15.6MJ/Kg and the LGI diet contained 51.4% (W/W basis) of high amylase starch (Hi-Maze) and a gross energy of 16.3MJ/Kg. At the end of this period, mice were euthanazed and livers were removed and microarray was performed.
Project description:HLA-B27 transgenic rats, experimental model of chronic colitis, fed with a diet in which the lipid component was provided by corn oil (CO group), extra-virgin olive oil rich in phenols, 718.8 mg of total phenols/kg of olive oil (EVOO group) or the same extra-virgin olive oil, deprived of phenolic compounds but retaining other minor components such as a-tocopherol (ROO group).
Project description:The starch, acting as the major energy-producing component of the daily diet, is the main carbohydrate in mammal nutrition. However, the nutritional value of starch can vary widely depending upon its source and site of digestion. The distinct physiological responses were previously observed both in human and other mammals, but still little is known about the underlying mechanisms regarding the metabolic shifts due to the intake of various dietary starches. Here, we assessed the overall metabolic changes in weaned pigs induced by different dietary starch sources at the transcriptome level. Sixteen weaned pigs (DurocÃLandraceÃYorkshire) were selected and randomly allotted to diets containing either wheat (WH) or cassava (CA) starch as the energy source (n=8). We measured serum metabolites and hormones and generated transcriptional profiles of liver. 648 genes in liver were differentially expressed in response to dietary starch sources. Pathway analysis indicated that dietary starch sources altered both carbohydrate and lipid metabolism in liver. In contrast, CA may be more healthful as dietary energy source than WH by down-regulating lipogenesis and steroidogenesis in liver. Sixteen weaned pigs (DurocÃLandraceÃYorkshire) with an average initial body weight of 7.37±0.25 kg were selected and randomly allotted to two dietary treatments (either wheat or cassava starch as the energy source) for 21 d. At the end of the trial, the liver tissue were collected for transcriptome analysis using Agilent porcine microarrays.
Project description:Diets rich in carbohydrates not only lead to obesity but also contribute to the liver metabolic diseases. Starch is the major energy source of the daily diet. However, little is known about the metabolic changes due to the intake of different dietary starches. Our aim was to assess the overall metabolic changes at the transcriptome level. Animal model was used, and a total of 16 weaned pigs were randomly allotted to two experimental diets containing either of cassava starch (CS) or maize starch (MS) during 21 days. At the end of the trial, liver tissues were sampled and used for analysis of digestive enzymes, metabolites and transcriptomes. The growth performance was not affected by dietary starch sources. However, CS-feeding significantly increased the serum insulin and cholesterol concentrations (P<0.05). The liver triglyceride and cholesterol content were both elevated by CS-feeding (P<0.05). Microarray analysis led to the identification of 648 genes differentially expressed in liver (P<0.05). The CS-feeding activated the transcription of lipogenic genes such as HMGR and FASN, but decreased the expression of lipolytic genes such as ACOX1, PPARA and FBP. The microarray results correlated well with the measurements of several key enzymes involved in hepatic lipid metabolisms. These results suggested that dietary starch source alters hepatic transcriptome in weaned pigs. The slowly digestible starch (i.e. MS) seemed to be more healthful for mammals as the dietary energy supplier by transcriptional down-regulation of lipogenesis and steroidogenesis.
Project description:In order to study the heart disorder that the long term, high energy diet caused, Bama miniature pigs were fed a high-fat, high-sucrose diet for 23 months. These pigs developed symptoms of metabolic syndrome and showed cardiac steatosis and hypertrophy with a greatly increased heart weight (1.82-fold, P<0.05) and heart volume (1.60-fold, P<0.05) compared with the control pigs. To understand the molecular mechanisms of cardiac steatosis and hypertrophy, nine pig heart cRNA samples were hybridized to porcine GeneChips. The control group consisted of 6 Bama pigs fed a control diet, and the HFHSD group comprised 6 pigs that were induced with a HFHS diet, which included 37% sucrose, 53% control diet and 10% pork lard. The pigs were fed twice every day and provided water ad libitum for 23 months. The pigs were fasted for 12 hours and euthanized with ketamine and xylazine. Pig hearts from the HFHSD group pigs (120, 126, 138, 140, 144, and 146) and three control group pigs (157, 159, and 161) were sampled and preserved in liquid nitrogen and then for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Consumption of diets rich in fibers has been associated with several beneficial effects on gastrointestinal health. However, detailed studies on the molecular effects of fibers in colon are limited. In this study we investigated and compared the influence of five different fibers on the mucosal transcriptome, and luminal microbiota and SCFA concentrations in murine colon. Mice were fed diets enriched with fibers that differed in carbohydrate composition, namely inulin (IN), oligofructose (FOS), arabinoxylan (AX), guar gum (GG), resistant starch (RS) or a control diet (corn starch) for 10 days. Gene expression profiling revealed the regulation of specific, but also overlapping sets of epithelial genes by each fiber, which on a functional level were mainly linked to cell cycle and various metabolic pathways including fatty acid oxidation, tricarboxylic acid cycle, and electron transport chain. In addition, the transcription factor PPAR was predicted to be a prominent upstream regulator of these processes. Microbiota profiles were distinct per dietary fiber, but the fibers IN, FOS, AX and GG induced a common change in microbial groups. All dietary fibers, except resistant starch, increased SCFA concentrations but to a different extent. Multivariate data integration revealed strong correlations between the expression of genes involved in energy metabolism and the relative abundance of bacteria belonging to the group of Clostridium cluster XIVa, that are known butyrate producers. These findings illustrate the potential of multivariate data analysis to unravel simple relationships in complex systems. Keywords: Expression profiling by array Mice received a control diet, or a diet supplemented with 10% dietary fibers for 10 days. After an overnight fast colon was removed, epithelial cells were scraped off, and subjected to gene expression profiling.
Project description:In the experiment two groups of rats were compared. The control group consisted of 10 male, 5- to 6-weeks old, Fischer 344 (F344) rats (Nossan, Correzzana, Milan, Italy) fed a high fat, high sucrose, low fibre diet (control diet) for two weeks. This diet was based on the AIN76 diet [19], and was modified to contain 23% (w/w) fat (from corn oil) and a low level of cellulose (2% w/w), to mimic the high risk of colon cancer in human populations consuming high fat diets. The experimental group consisted of 10 male, 4- to 5-weeks old, F344 rats fed the same high fat diet as the control group in combination with 50 mg/kg red wine polyphenols for two weeks. The red wine polyphenol extract was prepared as described by Femia et al.<br> Total RNA was extracted using the RNeasy Midi kit (Qiagen, Milan, Italy). Equally amounts of RNA extracted from the colon mucosa of control diet-fed rats (n=10) were pooled and used as common reference for all hybridizations.