Expression profile of wild type (WT) vs miR-155-/- in FLT3-ITD+ AML (MV4-11) cell lines
Ontology highlight
ABSTRACT: The expression profile in miR-155-/- FLT3-ITD+ AML is unknown. Using empty vector (EV) or two distinct miR-155 (S3 or S10) lentiviral CRISPR-Cas9 infected FLT3-ITD+ AML cell lines (MV4-11 cells), we performed next generation RNA sequencing to determine the expression profile in these cells dependent on miR-155. We found a number of pathways dysregulated, including STAT5 activation. RNAseq was performed on EV or miR-155 lentiviral CRISPR-Cas9 infected MV4-11 cell lines in triplicate cultures.
Project description:The expression level of microRNAs in FLT3-ITD+ AML is unknown. Using empty vector (EV) lentiviral CRISPR-Cas9 infected FLT3-ITD+ AML cell lines (MV4-11 cells), we performed next generation RNA sequencing on small RNAs to determine microRNA expression level in these cells. We found a variety of evolutionarily conserved and non-conserved microRNAs expressed in our cells of interest. Small RNAseq on EV lentiviral CRISPR-Cas9 infected MV4-11 cell lines was performed on triplicate cultures.
Project description:Differential gene expression profile of CD4+ T cells from 10 months old Wt, miR-155-/-, miR-146a-/- and DKO mice spleens. Wt, miR-155-/-, miR-146a-/- and DKO mice were aged 10 months, CD4+ T cells were sorted from mice spleens for analyses.
Project description:Differential gene expression profile of Tfh and non-Tfh cells from both Wt and miR-155-/- mice spleens. Wt and miR-155-/- mice were immunized with OVA. 8 days post immunization, CD4+CXCR+PD1+ Tfh cells and CD4+CXCR5-PD1- non Tfh cells were sorted from mice spleens for analyses.
Project description:The expression profile in miR-155-/- FLT3-ITD+ AML is unknown. Using empty vector (EV) or two distinct miR-155 (S3 or S10) lentiviral CRISPR-Cas9 infected FLT3-ITD+ AML cell lines (MV4-11 cells), we performed next generation RNA sequencing to determine the expression profile in these cells dependent on miR-155. We found a number of pathways dysregulated, including STAT5 activation.
Project description:Compare transcriptomes from SS18-SSX1 and SS18-SSX2 tumors 6 tumors analyzed, 3 from each genotype, all initiated by TATCre injection
Project description:Purpose: To identify differntially expressed transcripts in TP-0903 treated embryos that impair cranila NC EMT and cell migration in zebrafish embryos Methods: zebrafish embryos treated at 13 hpf with 5-7uM TP-0903 and DMSO for 1-, 4- and 8-hrs at 28°C. 35 embryos were collected for each treatment. Results: TP-0903 increases expression of several retinoic acid target genes including genes from within the retinoid pathway Conclusions: TP-0903 causes a direct increase in RA signaling that impairs cranial NC EMT and cell migration in zebrafihs embryos mRNA profiles of zebrafish embryos treated with TP-0903 and DMSO were generated by RNA-Seq, in quadruplicates, using Illumina Hi Seq
Project description:We investigated the gene expression profile changes after Ezh2 conditional knockout in the mouse retina at E16.5. Loss of Ezh2 leads to up-regulation of PRC2 targeted genes including cell cycle regulators and multiple genes which are not normally expressed in the retina, including many Hox genes. Loss of Ezh2 resulted in a dramatic decline in progenitor proliferation by postnatal day 3, such that there is an early end to neurogenesis, and disruption of laminar organization. Although there are only minor effects on embryonic retinal development, there is accelerated differentiation of several late born cell types postnatally, including photoreceptors and Mueller glia, which become reactive by postnatal day 14. Peripheral retina was dissected at E16.5 from Pax6alpha-Cre:Ezh2fl/+ and Pax6alpha-Cre:Ezh2fl/null mouse embryos. Total RNA was purified and RNA deep sequencing was done using 4 controls and 4 conditional knockout samples.
Project description:MCF-7 cells were treated with either ZNA (30 uM) or a vehice control for 3 or 12 hours. Following RNA sequencing, the control-normalized data was used to analyze genes altered by ZNA treatment. Following RNA sequencing, the control-normalized data was used to analyze genes altered by ZNA treatment. MCF-7 cells were treated with either ZNA (30 uM) or a vehice control for 3 or 12 hours.
Project description:small RNAseq was preformed on Wt bone marrow-derived dendritic cells (BMDC) and miR-155 and miR-146a double knockout (DKO) BMDCs that received Wt exosomes to investigate the differences in transferred miRNA Small RNA profiles were generated from Wt donor BMDCs and DKO BMDCs given Wt exosomes 3 replicates in each group
Project description:Our gene set analysis of MV4-11-R versus MV4-11 indicated decreased depolarization of mitochondria and mitochondrial membrane, mitochondrial dysfunction and anti-apoptosis as other top ranked molecular or cellular functions of differential gene sets. expression of most genes encoding glycolytic enzymes was up-regulated in MV4-11-R cells we revealed a metabolic alteration in sorafenib-resistant cell lines with mitochondrial respiration deficiency, leading to substantial decrease of mitochondria-derived ATP generation and a significant increase in glycolytic activity to maintain sufficient ATP production. Our study revealed a metabolic signature of sorafenib resistance and indicated that increase of glycolytic activity including upregulation of major glycolytic enzymes may be viewed as a marker for early detection of sorafenib resistance in AML patients with FLT3/ITD mutation and glycolytic inhibitors warrant further investigation as alternative therapeutic agents for sorafenib-resistant cells Sorafenib resistant cells MV411-R VS. parental MV4-11 cells. Biological replicates: 3 control replicates, 3 treated replicates.