Next Generation Sequencing Facilitates Quantitative Analysis of Cucumber and Botrytis cinerea Transcriptome Changes During Infection
Ontology highlight
ABSTRACT: Purpose: The goals of this study are using RNA-seq to obtain cucumber and Botrytis cinerea transcriptome changes during infection Methods: mRNA profiles of anti-infection samples and interaction sample were generate by deep sequencing,using Illumina Hiseq 2500. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: BurrowsâWheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRTâPCR validation was performed using SYBR Green assays Results: Using an optimized data analysis workflow,In total, 248,908,688 raw reads were generated; after removing low-quality reads and those containing adapter and poly-N, 238,341,648 clean reads remained to map the reference genome. There were 3,512 cucumber (differential expression genes) DEGs and 1,735 B. cinerea DEGs. GO enrichment and KEGG enrichment analysis were performed on these DEGs to study the interaction between cucumber and B. cinerea. To verify the reliability and accuracy of our transcriptome data, 5 cucumber DEGs and 5 B. cinerea DEGs were chosen for RT-PCR verification. Conclusions:To the best of our knowledge, this is the first analysis of large-scale transcriptome changes of cucumber during the infection of Botrytis cinerea. These results will increase our understanding of the molecular mechanisms of the cucumber defense Botrytis cinerea and may be used to protect plants against disasters caused by necrotrophic fungal pathogens. mRNA profiles of infection and anti-infection cucumber were generated by deep sequencing, using Illumina Hiseq 2500 .
Project description:Purpose: The goals of this study are using RNA-seq to obtain cucumber and Botrytis cinerea transcriptome changes during infection Methods: mRNA profiles of anti-infection samples and interaction sample were generate by deep sequencing,using Illumina Hiseq 2500. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR validation was performed using SYBR Green assays Results: Using an optimized data analysis workflow,In total, 248,908,688 raw reads were generated; after removing low-quality reads and those containing adapter and poly-N, 238,341,648 clean reads remained to map the reference genome. There were 3,512 cucumber (differential expression genes) DEGs and 1,735 B. cinerea DEGs. GO enrichment and KEGG enrichment analysis were performed on these DEGs to study the interaction between cucumber and B. cinerea. To verify the reliability and accuracy of our transcriptome data, 5 cucumber DEGs and 5 B. cinerea DEGs were chosen for RT-PCR verification. Conclusions:To the best of our knowledge, this is the first analysis of large-scale transcriptome changes of cucumber during the infection of Botrytis cinerea. These results will increase our understanding of the molecular mechanisms of the cucumber defense Botrytis cinerea and may be used to protect plants against disasters caused by necrotrophic fungal pathogens.
Project description:Full transcriptomes of the Botrytis cinerea wild-type strain B0510 and 4 non-pathogenic mutants, grown in a cucumber liquid medium, were compared to identify differentially expressed genes.
Project description:To investigate NUP62 in the regulation of plant defense against Botrytis cinerea , we performed gene expression profiling analysis using data obtained from RNA-seq of nup62 mutant and WT arabidopsis with or without Botrytis cinerea infection.
Project description:Nitrogen is the most important mineral nutrient of plant. As a worldwide and economically important vegetable, cucumber (Cucumis sativus L.) has a strong nitrogen-dependence. We took whole transcriptome sequencing approach to compare the gene expression profiles of cucumber leaves and roots grown under sufficient or insufficient nitrate supply. Analysis of the transcriptome data revealed that the root and leaf adapt different response mechanisms to long-term nitrogen deficiency. Photosynthesis and carbohydrate biosynthetic process were pronouncedly and specifically reduced in leaf, while the ion transport function, cell wall and phosphorus-deficiency response function seem systematically down-regulated in root. Genes in nitrogen uptake and assimilation are decreased in root, but some are increased in leaf under nitrogen deficiency. Several lines of evidence suggest that the altered gene expression networks support the basic cucumber growth and development likely through successful nitrogen remobilization involving in the induced expression of genes in ABA and ethylene pathways. cucumber leaf and root mRNA of 28-day after sowing nitrogen deficiency and sufficiency deep sequencing, using Illumina HiSeq 2000
Project description:To screen Botrytis genes activated in infection process, we performed gene expression profiling analysis using data obtained from RNA-seq of Botrytis cinerea cultured in vitro or infecting Arabidopsis leaves.
Project description:Cucumber (Cucumis sativus L.) fruit is a type of fleshy fruit that is harvested immaturely. Early fruit development directly determines the final fruit length and diameter, and consequently the fruit yield and quality. Different cucumber varieties display huge variations of fruit length, but how fruit length is determined at the molecular level remains poorly understood. To understand the genes and gene networks that regulate fruit length in cucumber, high throughout RNA-seq data were used to compare the transcriptomes of early fruit from two near isogenic lines with different fruit lengths. 3955 genes were found to be differentially expressed, among which 2368 genes were significantly up-regulated and 1587 down-regulated in the line with long fruit. Microtubule and cell cycle related genes were dramatically activated in the long fruit, and transcription factors were implicated in the fruit length regulation in cucumber. Thus, our results built a foundation to dissect the molecular mechanism of fruit length control in cucumber, a key agricultural trait of significant economic importance. Comparative analysis of fruit from two near-isogenic lines, 408 (long fruit) and 409 (short fruit), was employed to discover genes and networks that regulate the fruit length. Two biological replicates were used from each line.
Project description:af13_plp2 - plp2 botrytis cinerea 2 - Effects of deregulation of a lipid acyl hydrolase gene (PLP2, At2g26560) on global transcriptome upon infection by Botrytis cinerea. This deregulation affects resistance levels against fungal and bacterial pathogens, likely by perturbing the biosynthesis of oxylipins. Oxylipins are fatty acid-derived compounds (example:jasmonic acid) with diverse signaling or antimicrobial properties. - 5000 spores of Botrytis were pipetted on 4 infection sites per ault leaf. Leaf material was harvested at 0 and 2 days later. 3 plant genotypes were used (Col-0 ecotype): siPLP2 (RNAi-silenced),pBIN (empty pBIN-transformed),PLP2OE (PLP2-overexpressors).