Single cell differences in matrix gene expression do not predict matrix deposition
Ontology highlight
ABSTRACT: We performed RNA sequencing on several clones of bovine mesenchymal stem cells from the same donor. Bulk mRNA sequencing in 17 different clones from the same donor and a heterogeneous population from the same donor.
Project description:Maternal nutrition exclusively during the periconceptional period can induce remarkable effects on both oocyte maturation and early embryo development, which in turn can have lifelong consequences. The objective of this study was to evaluate the effect of maternal methionine supplementation on the transcriptome of bovine preimplantation embryos. Holstein cows were randomly assigned to one of two treatments differing in level of dietary methionine (1.89 Met vs. 2.43 Met % of metabolizable protein) from calving until embryo flushing. High quality preimplantation embryos from individual cows were pooled and then analyzed by RNA sequencing. A total of eight Holstein dairy cows were used in this study. Preimplantation embryos recovered from each cow were pooled in order to generate two replicates per cow assayed. Each pool consisted of 2-4 expanded blastocysts with excellent quality. Overall, a total of 16 embryo pools underwent RNA extraction, amplification, and subsequent sequencing.
Project description:The phenomenon of nucleosome retention in mammalian sperm chromatin is still not clarified yet. The goal of our study was to characterize the binding sites of sperm nucleosomes in the human and bovine genomes, and through this, to clarify whether nucleosome retention in sperm underlies rules of great generality and has a biological function. Comparing two mammalian systems we found that nucleosomes remain mainly in centromeres and in non-coding intergenic and intron regions. In contrast, coding DNA, promoter regions and transcription start and end sites, especially in homeobox genes and in the majority of genes with relevance for organ development and morphogenesis, were nucleosome-free. 146 bp mono-nucleosomal DNA was isolated and purified from sperm samples of two fertile bulls (bos taurus), one fertile man and a pool of four fertile donors; each DNA sample was deep sequenced using Illumina GAIIx and genome-wide mapped on respective genome; nucleosome-binding sites were analyzed in a genome-wide comparative manner.
Project description:We report RNAseq analysis of the transcriptome of 3 biological replicates of bovine retina Examine retinal transcriptome of 3 biological replicates with tissue collected between 7:00 - 10:00AM
Project description:Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. We developed an improved hepatic differentiation protocol and compared multiple hiPSC lines. This comparison indicated that the hepatic differentiation propensity varies among sibling hiPSC clones derived from the same adult human dermal fibroblasts (aHDFs). In addition, hiPSC clones derived from peripheral blood cells (PB-iPSCs) consistently showed good hepatic differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts (aHDF-iPSCs) showed poor hepatic differentiation. However, when we compared hiPSCs from blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. In order to understand the molecular mechanisms underlying the observed variations in hepatic differentiation, we performed microarray analyses of sibling aHDF-iPSC clones, and aHDF- and PB-iPSC clones from the same individuals. Undifferentiated aHDF- and PB-iPSCs from the same individuals (two Parkinson’s disease patients (PD #1 and PD #2) and one adult healthy donor (donor91))
Project description:Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. We developed an improved hepatic differentiation protocol and compared multiple hiPSC lines. This comparison indicated that the hepatic differentiation propensity varies among sibling hiPSC clones derived from the same adult human dermal fibroblasts (aHDFs). In addition, hiPSC clones derived from peripheral blood cells (PB-iPSCs) consistently showed good hepatic differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts (aHDF-iPSCs) showed poor hepatic differentiation. However, when we compared hiPSCs from blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. In order to understand the molecular mechanisms underlying the observed variations in hepatic differentiation, we performed microarray analyses of sibling aHDF-iPSC clones, and aHDF- and PB-iPSC clones from the same individuals.
Project description:Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. We developed an improved hepatic differentiation protocol and compared multiple hiPSC lines. This comparison indicated that the hepatic differentiation propensity varies among sibling hiPSC clones derived from the same adult human dermal fibroblasts (aHDFs). In addition, hiPSC clones derived from peripheral blood cells (PB-iPSCs) consistently showed good hepatic differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts (aHDF-iPSCs) showed poor hepatic differentiation. However, when we compared hiPSCs from blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. In order to understand the molecular mechanisms underlying the observed variations in hepatic differentiation, we performed microarray analyses of sibling aHDF-iPSC clones, and aHDF- and PB-iPSC clones from the same individuals.
Project description:The aim of our study is to identify the role of FUS in shaping the transcriptome. RNA-seq of two FUS KO clones was performed and compared to wt; for each, four replicates were sequenced. RNA molecules associated with the FUS protein were determined by means of a RNA immuno-precipitation, followed by high-throughput sequencing. Total RNA was used as a control. SH-SY5Y cells were used for both experiments. RNA-seq: 4 wt samples, 4 A4 KO samples, 4 A5 KO samples. RIP-seq: 1 input control sample, 3 anti-FUS IP replicates.
Project description:The incidence of renal cell carcinoma (RCC) is increasing worldwide, and its prevalence is particularly high in some parts of Central Europe. The study describes transcriptome sequencing of clear cell RCC (ccRCC), the most common form of the disease, in patients from four different European countries with contrasting disease incidence.
Project description:Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) sets their identity back to an embryonic age. This presents a fundamental hurdle for modeling late-onset disorders using iPSC-derived cells. We therefore developed a strategy to induce age-like features in multiple iPSC-derived lineages and tested its impact on modeling Parkinson’s disease (PD). We first describe markers that predict fibroblast donor age and observed the loss of these age-related markers following iPSC induction and re-differentiation into fibroblasts. Remarkably, age-related markers were readily induced in iPSC-derived fibroblasts or neurons following exposure to progerin including dopamine neuron-specific phenotypes such as neuromelanin accumulation. Induced aging in PD-iPSC-derived dopamine neurons revealed disease phenotypes requiring both aging and genetic susceptibility such as frank dendrite degeneration, progressive loss of tyrosine-hydroxylase expression and enlarged mitochondria or Lewy body-precursor inclusions. Our study presents a strategy for inducing age-related cellular properties and enables the modeling of late-onset disease features. Induced pluripotent stem cell-derived midbrain dopamine neurons from a young and old donor overexpressing either GFP or Progerin.