Combination of multiomics approach and BCR-ABL based molecular testing: A better way to monitor treatment regimen and disease progression in Chronic Myeloid Leukemia [HTA-2_0]
Ontology highlight
ABSTRACT: We screened TKI-treated-CML-samples in different-phases based on < or >10% copies of BCR-ABL, undetected and control-samples for generating transcriptomics-profile. Transcriptionally, three clusters were identified which showed correlation with BCR-ABL transcript-levels i.e. <10% copies (I-cluster) , undetectable (II-cluster) and >10% copies (III-cluster). CML-new cases as well as Tyrosine kinase treated-different phases of CML
Project description:We screened TKI-treated-CML-samples in different-phases based on < or >10% copies of BCR-ABL, undetected and control-samples for generating transcriptomics-profile. Transcriptionally, three clusters were identified which showed correlation with BCR-ABL transcript-levels i.e. <10% copies (I-cluster) , undetectable (II-cluster) and >10% copies (III-cluster). CML-new cases as well as Tyrosiine kinase treated-different phases of CML
Project description:We screened TKI-treated-CML-samples in different-phases based on < or >10% copies of BCR-ABL, undetected and control-samples for generating transcriptomics-profile. Transcriptionally, three clusters were identified which showed correlation with BCR-ABL transcript-levels i.e. <10% copies (I-cluster) , undetectable (II-cluster) and >10% copies (III-cluster).
Project description:We screened TKI-treated-CML-samples in different-phases based on < or >10% copies of BCR-ABL, undetected and control-samples for generating transcriptomics-profile. Transcriptionally, three clusters were identified which showed correlation with BCR-ABL transcript-levels i.e. <10% copies (I-cluster) , undetectable (II-cluster) and >10% copies (III-cluster).
Project description:KCL-22 is a chronic myeloid leukemia (CML) cell line derived from a patient in blast crisis phase and harbors the BCR-ABL translocation. The catalytic (ATP-competitive) BCR-ABL inhibitors imatinib and nilotinib have dramatically improved CML patient outcome, but the development of resistance remains a clinical challenge. The recent identification of allosteric BCR-ABL inhibitors, such as GNF-2, which target the enzyme by binding to the myristoyl pocket rather than catalytic site of ABL1, may provide a strategy to broadly overcome resistance to the class of ABL1 ATP competitive inhibitors. We therefore wanted to use the ClonTracer barcoding system to compare the clonal responses of KCL-22 to imatinib, nilotinib and GNF-2. RNA-seq was employed to characterize genetic alterations and gene expression signatures in the pooled cell populations resistant to BCR-ABL inhibitors as well as single clones showing differential response to the three inhibitors. mRNA profiling of the subpopulations and single clones of human CML cell line KCL-22 that contribute to BCR-ABL inhibitor resistance
Project description:Chronic myelogenous leukemia (CML) is a malignant stem cell disease characterized by a reciprocal translocation between chromosome 9 and 22. The selective bcr-abl tyrosine-kinase inhibitor Imatinib has become the therapy of choice for patients with newly diagnosed CML including those previously considered candidates for allogeneic haematopoietic stem cell transplantation. The tyrosine-kinase inhibitor Nilotinib is a derivate of Imatinib with higher potency. To examine the molecular and functional effects of Nilotinib and Imatinib in chronic myelogenous leukemia, we performed gene expression and functional analyses in K562 cells following treatment with the two tyrosine kinase inhibitors. Experiment Overall Design: Affymetrix U133A 2.0 microarrays were used to examine the gene expression profile of K562 cells after in vitro treatment with Imatinib (0.5 µM) or Nilotinib (0.05 µM) for 24 hours. Gene expression data of the treated cells were compared with data of untreated cells.
Project description:Gene expression profile variation between 4 BCR-Abl transduced cell lines: <br> 1-Mouse DA1-3b cell line as reference, <br> 2-DR1 imatinib resistant clone with E255K BCR-abl mutation<br> 3-DRBMSR 2 dasatinib resistant clone with E255K and T315I BCR-Abl mutation.<br> 4-DRBMSR 7 dasatinib resistant clone with E255K and T315I and V299L BCR-Abl mutation<br> <br> BCR-ABL is an oncogenic tyrosine kinase involved in the development of chronic myelogenous leukaemia (CML).
Project description:Although Bcr-Abl kinase inhibitors have proven effective in the treatment of chronic myeloid leukemia (CML), they generally fail to completely eradicate Bcr-Abl+ leukemia cells. To identify genes whose inhibition sensitizes Bcr-Abl+ leukemias to killing by Bcr-Abl inhibitors, we performed an RNAi-based synthetic lethal screen with imatinib in CML cells. This screen identified numerous components of a Wnt/Ca2+/NFAT signaling pathway. Antagonism of this pathway led to impaired NFAT activity, decreased cytokine production and enhanced sensitivity to Bcr-Abl inhibition. Furthermore, NFAT inhibition with cyclosporin A facilitated leukemia cell elimination by the Bcr-Abl inhibitor dasatinib and markedly improved survival in a mouse model of Bcr-Abl+ acute lymphoblastic leukemia (ALL). Targeting this pathway in combination with Bcr-Abl inhibition could improve treatment of Bcr-Abl+ leukemias. We utilized a genome-wide shRNA library in combination with microarray analysis to screen for gene targets in chronic myeloid leukemia cells that cooperate with imatinib.
Project description:We analysed the impact of single nucleotide polymorphisms (SNPs) in drug transporter genes on the molecular response to imatinib, using 857 SNPs covering 94 drug transporter genes on 355 chronic phase chronic myeloid leukemia (CP-CML) patients. Samples were analyzed with respect to sex, imatinib daily dose, SOKAL score and the levels of molecular responses. The 'characteristics: molecular response' values represent the ratio BCR-ABL/ABL*100, which is determined by RT-QPCR (real time quantitative PCR). It is the percentage of the number of copies of BCR-ABL transcript on the number of ABL transcript copies.
Project description:Background MicroRNAs are important regulators of transcription in hematopoiesis. Their expression deregulations were described in association with pathogenesis of some hematological malignancies. This study provides integrated microRNA expression profiling at different phases of chronic myeloid leukemia (CML) with the aim to select CML specific miRNAs and find new possible biomarkers. The functions of in silico filtered targets are in this report annotated and discussed in relation to CML pathogenesis. Results Using microarrays we identified differential expression profiles of 49 miRNAs in CML patients at diagnosis, in hematological relapse, therapy failure, blast crisis and major molecular response. The expression deregulation of miR-150, miR-20a, miR-17, miR-19a, miR-103, miR-144, miR-155, miR-181a, miR-221 and miR-222 in CML was confirmed by real-time quantitative PCR and in silico analyses identified targeted genes of these miRNAs encoding proteins that are involved in cell cycle, growth inhibition, MAPK, ErBb, transforming growth factor beta and p53 signaling pathways that are related to CML. Validated miR-150 decreased levels were detected in patients at diagnosis, in blast crisis and 67% of hematological relapses and showed significant negative correlation with miR-150 proved target MYB and with BCR-ABL transcript level. Conclusions This study revealed microRNAs that may be related to the CML pathogenesis and may reflect transformation from chronic to accelerated phases. The obtained expression patterns in peripheral blood total leukocytes during the course of CML suggest specific miRNAs as possible biomarkers. The annotated functions of in silico filtered targets of selected miRNAs outline mechanisms whereby microRNAs may be involved in CML pathogenesis. Twenty four patient samples of total leukocytes from peripheral blood were used to prepare pools representing different CML phases for microarray analysis: diagnosis (n=5, Dg), major molecular response (n=5, MMR), therapy failure (n=5, TF), hematological relapse (n=5, Hr), and blast crisis (n=4, BC). Eleven healthy donors of age median 60 (range 45 - 78) and man/woman ratio 3/2 following CML incidence were used to create a control pool.
Project description:To evaluate the long-term growth potential of BCR-ABL-transduced primitive human hematopoietic cells, lin- cord blood cells containing an MSCV-BCR-ABL-IRES-GFP (BCR-ABL) or control-GFP transgene (MIG) were injected IP into fetal goats at 45-55 days of gestation. Six transplant goats were born alive. One was examined three weeks after birth and showed GFP+ cells in the blood, bone marrow (BM), liver, kidney, lung, heart, and both skeletal and smooth muscle. FISH analysis also showed the liver of this goat contained BCR-ABL-GFP transgenic cells. The remaining five goats appear normal although, in some, the WBC count is elevated 3- to 5-fold. GFP+ cells, including cells identifiable by FACS as human CD34+ cells, have been detected in the blood of all these goats. The presence of BCR-ABL-GFP transgenic cells in the BM and liver was confirmed by FISH analysis, and quantitative real-time PCR analysis of genomic DNA isolated from unpurified BM cells obtained from three of the transplant goats demonstrated 3-5Ã104 copies of the transgene per microgram of DNA. Microarray transcript profiling was performed on blood and liver tissues of normal goats, BCR-ABL chimeric goats, MIG chimeric goats, and normal human samples. RNA for human genes was detected in goats transplanted with cord blood cells but not in normal goats, and the RNA abundance of some genes in BCR-ABL chimeric goat blood was similar to or greater than levels observed in MIG goat blood or normal human samples. Quantitative RT-PCR confirmed the differential expression of several genes in goats carrying the BCR-ABL vs. control transgene. These results demonstrate long-term engraftment but slow expansion in a large animal model of primitive human hematopoietic cells transduced with a BCR-ABL fusion gene and transplanted in utero. This novel xenotransplant goat model should be useful for analyzing the initial phases of development of human CML and for assessing new therapies with potential long-term benefits. Experiment Overall Design: Total RNA was extracted from liver (L) and blood (B) samples of normal goats (ng), humans (hu), chimeric goats engrafted with human cord blood stem cells containing control (mig) vector, and chimeric goats engrafted with CML (bcrabl) vector. RNA samples were profiled on Affymetrix human U133A GeneChips and examined for differentially expressed genes in CML vs control goats, filtering for signals significantly above background levels observed in normal goat to select for specific human gene expression.