RNA-seq analysis of transcriptomes at 1 day after sexual induction in Fusarium graminearum strains
Ontology highlight
ABSTRACT: Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. To dissect molecular mechanisms for initial stage of perithecia development, we compared transcriptomes of fungal cultures harvested from F. graminearum wild-type strain Z-3639, abaA, and fpo1 at 1 day after sexual induction. 9 samples examined: Fungal cultures harvested from Fusarium graminearum wild-type strain Z-3639, abaA, and fpo1 at 1 day after sexual induction.
Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. Fhs1 contains a Zn(II)2Cys6 fungal-type DNA-binding domain and localized to nuclei , suggesting that Fhs1 is a transcription factor required for hydroxiurea. 6 samples examined: 24 h after inoculation of Fusarium graminearum wild-type Z-3639 and fhs1 (Îfhs1::GEN) strains in complete media
Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. To dissect cellular responses toward heat stress in the plant pathogenic fungus F. graminearum, we compared transcriptomes of the fungal cultures incubated in normal temperature condition (25 ºC) and in high temperature condition (37 ºC) for 15 min. 6 samples examined: 24 h-old mycelia from complete medium (CM) of Fusarium graminearum wild-type Z-3639 were incubated in normal temperature condition (25 ºC) and in high temperature condition (37 ºC) for 15 min.
Project description:Fusarium graminearum is a major pathogen of Fusarium head blight in wheat, barley, and rice, as well as ear rot and stalk rot in maize. Regulatory Factor X (RFX) transcription factors are well-conserved in animals and fungi, but their functions are diverse, ranging from DNA-damage response to ciliary gene regulation. We investigated the role of the sole RFX transcription factor, RFX1, in F. graminearum. Deletion of rfx1 resulted in multiple defects in hyphal growth, conidiation, virulence, and sexual development. Deletion mutants of rfx1 were more sensitive to various types of DNA damage than the wild-type strain. Septum formation was inhibited and micronuclei were produced in the rfx1 deletion mutants. The results of the neutral comet assay demonstrated that disruption of rfx1 function caused spontaneous DNA double-strand breaks. To understand regulatory mechanisms of rfx1 in F. graminearum, we obtained and analyzed genome-wide transcription profiles generated from the RNA-sequencing data of the wild-type and M-NM-^Trfx1 strains. RNA-sequencing-based transcriptomic analysis revealed that RFX1 suppressed the expression of many genes, including genes for the repair of DNA damage. 2 samples examined: mycelia harvested 24 h after inoculation of wild-type conidia in complete medium; mycelia harvested 32 h after inoculation of M-NM-^Trfx1 conidia in complete medium
Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. FSS1 contains a Zn(II)2Cys6 fungal-type DNA-binding domain and localized exclusively to nuclei responding to sodium, suggesting that FSS1 is a TF required for sodium tolerance. By RNA-seq and genetic studies, we found a P-type ATPase pump (FgENA5) that is under control of FSS1 and is responsible for phenotypic defects of fss1 mutants. The wild-type, fss1 deletion, fss1 overexpression mutant strains were incubated in potato dextrose broth (PDB) with or without 1 M NaCl supplementation for an hour. 6 samples examined: 1 h after inoculation of Fusarium graminearum wild-type, Δfss1(Δfss1::gen), and fss1 overexpression mutant (fss1::gen-Pef1a-fss1) strains in potato dextrose broth with or without 1 M NaCl supplementation
Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. To dissect molecular mechanisms for initial stage of perithecia development, we compared transcriptomes of fungal cultures harvested from F. graminearum wild-type strain Z-3639, abaA, and fpo1 at 1 day after sexual induction.
Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. To dissect molecular mechanisms of small non-coding RNA-mediated gene regulation during ascospore production, we compared small RNA transcriptomes of fungal cultures harvested from F. graminearum wild-type strain Z-3639 and RNAi component mutants at 5 days after sexual induction.
Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. To dissect molecular mechanisms of small non-coding RNA-mediated gene regulation during ascospore production, we compared transcriptomes of fungal cultures harvested from F. graminearum wild-type strain Z-3639 and RNAi component mutants at 5 days after sexual induction.
Project description:Ssk1-type response regulator proteins are the core elements of histidine-to-aspartate systems that mediate fungal stress tolerance, a determinant to the biocontrol potential of fungal entomopathogens. We characterized for the first time the functions of Beauveria bassiana Ssk1 (Bbssk1) by analyzing multi-phenotypic changes in DBbssk1 and differentially expressed genes (DEGs) in the digital gene expression (DGE) libraries of DBbssk1 and wild-type constructed under osmotic stress. The results revealed 1003 DEGs, of which many associated with conidiation, xenotics transport, cell wall integrity, and protein and carbohydrate metabolism were greatly down-regulated. Total RNA obtained from Bbssk1 disruption mutant subjected to 0.5 M NaCl for 30 minutes compared to the wild type strain under the same stress treatment.
Project description:Transcription factor Msn2 played crucial roles in mediating fungal stress tolerance, a determinant to the biocontrol potential of fungal entomopathogens. We characterized for the first time the functions of Beauveria bassiana Msn2 (BbMsn2) and Metarhizium robertsii (MrMsn2) by analyzing multi-phenotypic changes in Msn2-deletion and investigating transcription patterns of WT versus M-NM-^TMsn2 of B. bassiana and M. robertsii under thermal and oxidative stresses by using high throughput sequencing (RNA-Seq). Our transcriptional profiles revealed that numerous differentially expressed genes (DEGs), of which involved in transportation, detoxification, signal transduction, and energy metabolism, were significantly repressed in expression level. Total RNA obtained from Bbmsn2 and MrMsn2 disruption mutant subjected to 2 mM menadione and 40 M-BM-0C for 3-h response compared to the wild type strain under the same stress treatment.
Project description:Using a 3′-tiling microarray covering the whole F. graminearum genome, we carried out genome-wide expression analyses of F. graminearum strains deleted for MAT1-1 or MAT1-2 locus, or overexpression the MAT1-2-1 gene during the sexual devleopment Our study is the first report which elucidated the putative target genes of the mating type genes in Fusarium graminearum during sexual development