Expression data from Dmp1-Cre targeted and non-targeted Cxcl12-abundant reticular (CAR) cells in mouse bone marrow
Ontology highlight
ABSTRACT: In mouse bone marrow, mesenchymal stem cells (MSC) has the potential to form osteocytes, adipocytes and cartilage. In the process of osteogenesis, MSCs differenetiate into stromal cells, such as CAR cells. Osteoblast is responsible for the formation of osteocytes and osteoblasts may be differentiated from a subset of CAR cells. Dmp1-Cre targeted CAR cells are thought to enrich for a osteoblast progenitor population. We used microarrays to detail the gene expression profiles among Dmp1-Cre targeted and non-targeted CAR cells. Gene expression diffferences were compared to support the hypothesis that Dmp1-Cre targeted CAR cells may be enriched for osteoblast progenitors. Dmp1-Cre targeted and non-targeted CAR cells were FACS sorted from three mice. RNA were extracted from these sorted cells and processed for microarray using Affymetrix mogene 1.0 ST chip. Cells from one mouse represent one sample
Project description:In mouse bone marrow, mesenchymal stem cells (MSC) has the potential to form osteocytes, adipocytes and cartilage. In the process of osteogenesis, MSCs differenetiate into stromal cells, such as CAR cells. Osteoblast is responsible for the formation of osteocytes and osteoblasts may be differentiated from a subset of CAR cells. Dmp1-Cre targeted CAR cells are thought to enrich for a osteoblast progenitor population. We used microarrays to detail the gene expression profiles among Dmp1-Cre targeted and non-targeted CAR cells. Gene expression diffferences were compared to support the hypothesis that Dmp1-Cre targeted CAR cells may be enriched for osteoblast progenitors.
Project description:Jason M. Graham, Bruce P. Ayati, Sarah A. Holstein & James A. Martin. The role of osteocytes in targeted bone remodeling: a mathematical model. PLoS ONE 8, 5 (2013).
Until recently many studies of bone remodeling at the cellular level have focused on the behavior of mature osteoblasts and osteoclasts, and their respective precursor cells, with the role of osteocytes and bone lining cells left largely unexplored. This is particularly true with respect to the mathematical modeling of bone remodeling. However, there is increasing evidence that osteocytes play important roles in the cycle of targeted bone remodeling, in serving as a significant source of RANKL to support osteoclastogenesis, and in secreting the bone formation inhibitor sclerostin. Moreover, there is also increasing interest in sclerostin, an osteocyte-secreted bone formation inhibitor, and its role in regulating local response to changes in the bone microenvironment. Here we develop a cell population model of bone remodeling that includes the role of osteocytes, sclerostin, and allows for the possibility of RANKL expression by osteocyte cell populations. We have aimed to give a simple, yet still tractable, model that remains faithful to the underlying system based on the known literature. This model extends and complements many of the existing mathematical models for bone remodeling, but can be used to explore aspects of the process of bone remodeling that were previously beyond the scope of prior modeling work. Through numerical simulations we demonstrate that our model can be used to explore theoretically many of the qualitative features of the role of osteocytes in bone biology as presented in recent literature.
Project description:Hematopoietic stem cells (HSCs) primarily reside in the bone marrow where signals generated by stromal cells regulate their self-renewal, proliferation, and trafficking. Endosteal osteoblasts and perivascular stromal cells including endothelial cells3, CXCL12-abundant reticular (CAR) cells, leptin-receptor positive stromal cells, and nestin-GFP positive mesenchymal progenitors have all been implicated in HSC maintenance. However, it is unclear if specific hematopoietic progenitor cell (HPC) subsets reside in distinct niches defined by the surrounding stromal cells and the regulatory molecules they produce. CXCL12 (stromal-derived factor-1, SDF-1) regulates both HSCs and lymphoid progenitors and is expressed by all of these stromal cell populations. Here, we selectively deleted Cxcl12 from candidate niche stromal cell populations and characterized the effect on HPCs. Deletion of Cxcl12 from mineralizing osteoblasts has no effect on HSCs or lymphoid progenitors. Deletion of Cxcl12 from osterix-expressing stromal cells, which includes CAR cells and osteoblasts, results in constitutive HPC mobilization and a loss of B lymphoid progenitors, but HSC function is normal. Cxcl12 deletion in endothelial cells results in a modest loss of long-term repopulating activity. Strikingly, deletion of Cxcl12 in nestin-negative mesenchymal progenitors using Prx1-Cre is associated with a marked loss of HSCs, long-term repopulating activity, HSC quiescence, and common lymphoid progenitors. These data suggest that osterix-expressing stromal cells comprise a distinct niche that supports B lymphoid progenitors and retains HPC in the bone marrow, while expression of CXCL12 from stromal cells in the perivascular region, including endothelial cells and mesenchymal progenitors, support HSCs. Total of three samples of two groups analyzed. Replica samples of CXCL12-abundant reticular (CAR) cells from two CXCL12-GFP knock-in mice and a combined sample of PDGFRa+ Sca+ CD45- lineage- cells from three Prx1-Cre Rosa26Ai9/+ Cxcl12gfp/+ mice were used and analyzed.
Project description:Decline in hematopoietic function in aged individuals is associated with expansion of phenotypic hematopoietic stem cells (HSCs) and a shift in their lineage potential toward production of myeloid cells. Both HSC-intrinsic changes, and extrinsic changes in the bone marrow (BM) microenvironment, have been identified in old mice and humans. However, to extend healthy and robust hematopoietic function from youth into older age, we need to understand and effectively target the processes that initiate functional hematopoietic decline. We recently identified decline in Insulin-Like Growth Factor 1 (IGF1) in the BM microenvironment as early as middle age to be an HSC-extrinsic initiating driver of HSC aging (Young et al., Cell Stem Cell 2021). As systemic IGF1 administration has significant undesirable side effects, we sought to comprehensively interrogate the cell population(s) in the BM microenvironment that are responsible for IGF1 decline, towards the goal of cell type-specific targeted therapy. We performed single cell RNA-seq to comprehensively profile hematopoietic and non-hematopoietic fractions of the BM in young (2-4mo; n = 5 biological replicates) and middle-aged (12-14mo; n = 10) mice. In young mice, we find Igf1 to be nearly entirely detected in the mesenchymal stromal cell populations Adipo-CAR and Osteo-CAR, and Igf1 is significantly reduced in expression in both populations in middle-aged mice. Using two independent mesenchymal stromal cell Cre mouse lines, Lepr-Cre and Prx1-CreERT2, we found that knockout of Igf1 resulted in myeloid-biased hematopoiesis that replicated aging phenotypes. This result was similar to our published work showing that knockout of Igf1 using Nestin-CreER causes myeloid-biased hematopoiesis. While these Cre models generally do not mark similar cell types, it has been shown that Lepr-Cre-expressing perisinusoidal stromal cells include cells that express certain Nestin transgenes. Using fluorescent reporters, we find that all three lines (Lepr-Cre, Prx1-CreERT2, and Nestin-CreER) overlap in expression in the CAR populations that abundantly express Igf1 in young mice. Taken together, our work identifies a new role for Cxcl12-abundant reticular cells in sustaining hematopoietic function through local IGF1 production and suggests that specifically targeting CAR cells to maintain or restore Igf1 expression during aging will have beneficial effects on lymphoid cell production and adaptive immunity.
Project description:Immunotherapy using CD19-directed chimeric antigen receptor (CAR)-T cells has shown excellent results for treatment of B-cell leukaemia and lymphoma. To produce CAR-T cells, the patient’s own T cells are isolated from the blood and modified in a laboratory with a genetic vector to express a tumor antigen-directed CAR on its surface. The CAR-T cells are then expanded in numbers and given back to the patient with the aim to eradicate the tumors. However, some patients display primary resistance to CAR-T treatment while others relapse quickly after CAR-T treatment. In this experiment, we seek to understand whether the quality of the individual CAR-T cell product the patients were given can predict outcome to the therapy. We investigate the transcriptional profile of the individual CAR-T infusion products using single-cell RNA sequencing. In this dataset, we identified a T cell subset correlating with response that could be used as an indicator for clinical outcome. Targeted RNA and protein single-cell libraries were obtained using the BD Rhapsody platform (BD Biosciences). In total four separate targeted libraries were produced with 6 patients per library. Sequencing was performed on NovaSeq 6000 S1 sequencer at the SNP&SEQ Technology Platform (Uppsala, Sweden). The raw scRNA-seq data was pre-processed by BD Biosciences using the Rhapsody Analysis pipeline to convert the raw reads into Unique Molecular Identifier (UMI) counts. UMIs are further adjusted within Rhapsody by applying BD’s Recursive Substitution Error Correction (RSEC) and Distribution-Based Error Correction (DBEC) in order to remove false UMIs caused by sequencing or library preparation errors. Pooled samples were deconvoluted using Sample-tag reads. The scRNA-seq and AbSeq counts were loaded, processed and used for clustering and differential gene expression with Seurat v. 4.0.0.
Project description:Type of Experiment: 1) Profiles of Osteoblast vs. osteocyte in vitro; 2) Profiles of osteoblast low density vs. confluency in vitro; 3) Profiles of osteocyte with gap junction vs. without gap junction. Experimental factors: 1) 2T3 osteoblast cells at low density expressed extensive filopodia, reminiscent of early osteoblast precursors and similar to MLO-Y4 dendritic processes. 2) MLO-Y4 osteocytes at low vs. high density represent the genes that are changed in a highly connected network vs. low connected network. The number of hybridizations performed: Triplicate hybridizations for each status. Keywords = Osteoblast Keywords = Osteocyte
Project description:Protein disulfide isomerase (PDI) is an oxidoreductase responsible for the formation, reduction and isomerization of disulfide bonds of nascent proteins in endoplasmic reticulum (ER). So far, the role of PDI in bone biology has never been characterized using genetically-modified animal models. In this study we generated osteoblast- specific PDI-deficient mice by crossing PDI-floxed (PDIfl/fl) mice with Osx-Cre mice. Compared with their littermate control PDIfl/fl mice, homozygous osteoblast-knockout mice (Osx-Cre/PDIfl/fl) were embryonically lethal, but heterozygous knockout mice (Osx-Cre/PDIfl/wt) displayed significantly pronounced growth retardation and reduced bone length. Besides, the decreases in bone density, osteoblast and osteoclast numbers, collagen fiber content and bone formation rate were observed in Osx-Cre/PDIfl/wt mice. Osteoblast precursors isolated from PDIfl/fl mice were infected with Cre recombinant adenovirus to produce PDI-deficient osteoblasts, followed by induction of differentiation. Osteoblasts deficient of PDI had decreased alkaline phosphatase activity, mineralizing capacity, and differentiation. Quantitative protein mass spectrometry analysis and immunoblotting showed that PDI deficiency markedly decreased the expression of the α-subunits of collagen prolyl 4-hydroxylase (C-P4H), including P4HA1, P4HA2 and P4HA3. These results demonstrate that PDI plays an essential role in osteoblast differentiation and bone formation and is required for the expression of the α-subunit of C-P4H in osteoblasts.
Project description:Gene expression profiles were examined in mineralizing-osteoblast specific androgen receptor knockout (mOBL-ARKO) and WT male mice to identify genes regulated by the AR in mineralizing osteoblasts and osteocytes.
Project description:Type of Experiment: 1) Profiles of Osteoblast vs. osteocyte in vitro; 2) Profiles of osteoblast low density vs. confluency in vitro; 3) Profiles of osteocyte with gap junction vs. without gap junction. Experimental factors: 1) 2T3 osteoblast cells at low density expressed extensive filopodia, reminiscent of early osteoblast precursors and similar to MLO-Y4 dendritic processes. 2) MLO-Y4 osteocytes at low vs. high density represent the genes that are changed in a highly connected network vs. low connected network. The number of hybridizations performed: Triplicate hybridizations for each status. Keywords = Osteoblast Keywords = Osteocyte Keywords: parallel sample
Project description:This is a single arm study to evaluate the efficacy and safety of CEA-targeted CAR-T cells therapy for patients with relapsed/refractory CEA+ Cancer,and obtain the recommended dose and infusion plan.