Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Shox2/TALE ChIP-Seq


ABSTRACT: ChIP-Sequencing on Shox2-HA E12.5 and E13.5 Limb and Palate, as well as Pbx on E12.5 limb . Abstract: Vertebrate appendage patterning is programmed by Hox-TALE factors-bound regulatory elements. However, it remains enigmatic which cell lineages are commissioned by Hox-TALE factors to generate regional specific pattern and whether other Hox-TALE co-factors exist. In this study, we investigated the transcriptional mechanisms controlled by the Shox2 transcriptional regulator in limb patterning. Harnessing an osteogenic lineage-specific Shox2 inactivation approach we show that despite widespread Shox2 expression in multiple cell lineages, lack of the stylopod observed upon Shox2 deficiency is a specific result of Shox2 loss of function in the osteogenic lineage. ChIP-Seq revealed robust interaction of Shox2 with cis-regulatory enhancers clustering around skeletogenic genes that are also bound by Hox-TALE factors, supporting a lineage autonomous function of Shox2 in osteogenic lineage fate determination and skeleton patterning. Pbx ChIP-Seq further allowed the genome-wide identification of cis-regulatory modules exhibiting co-occupancy of Pbx, Meis, and Shox2 transcriptional regulators. Integrative analysis of ChIP-Seq and RNA-Seq data and transgenic enhancer assays indicate that Shox2 patterns the stylopod as a repressor via interaction with enhancers active in the proximal limb mesenchyme and antagonizes the repressive function of TALE factors in osteogenesis. Shox2/TALE For ChIP-Seq, the list of libraries below, including controls, were generated [listed in the format of (antibody)-target-tissue-stage]: (α-HA)-Shox2-Limb-E12.5, (α-HA)-Shox2-Limb-E13.5, (α-HA)-Shox2-Palate-E12.5, (α-HA)-Shox2-Limb/Palate-E12.5, (α-Pbx)-Pbx-Limb-E12.5, Input (control), (α-HA)-Mixed Limb/Palate from Shox2+/+ mice-E12.5 (control). *The attached signal tracks(*.bigwig) were generated by –bdgcmp (MACS2) to filter out background signal(by filtering against the signal track obtained from (α-HA)-Mixed Limb/Palate from Shox2+/+ mice-E12.5 (control)) and subsequently convert to bigwig for analysis and visualization.

ORGANISM(S): Mus musculus

SUBMITTER: Yiping Chen 

PROVIDER: E-GEOD-81897 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications


Vertebrate appendage patterning is programmed by Hox-TALE factor-bound regulatory elements. However, it remains unclear which cell lineages are commissioned by Hox-TALE factors to generate regional specific patterns and whether other Hox-TALE co-factors exist. In this study, we investigated the transcriptional mechanisms controlled by the Shox2 transcriptional regulator in limb patterning. Harnessing an osteogenic lineage-specific Shox2 inactivation approach we show that despite widespread Shox2  ...[more]

Similar Datasets

2016-07-05 | GSE81897 | GEO
2016-07-05 | E-GEOD-82300 | biostudies-arrayexpress
2016-07-05 | GSE82300 | GEO
2020-03-23 | GSE143911 | GEO
2020-03-23 | GSE143910 | GEO
2020-03-23 | GSE143912 | GEO
2015-07-21 | GSE70332 | GEO
2020-03-23 | GSE143913 | GEO
2019-10-23 | GSE138721 | GEO
2013-02-15 | E-GEOD-41945 | biostudies-arrayexpress