KSHV LANA upregulates the expression of EGFL7 proteins in BJAB cells
Ontology highlight
ABSTRACT: The objective of this study was to determine the effects of LANA on the expressions of the cellular genes. BJAB cells were transduced with lentiviral vector expressing LANA or the control vector, total RNA was extracted for the detection of relative expression of cellular genes in LANA expressing cells.
Project description:LANA is essential for tethering the KSHV genome to metaphase chromosomes and for modulating host-cell gene expression, but the binding sites in the host-chromosome remain unknown. Here, we use LANA-specific chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) to identify LANA binding sites in the viral and host-cell genomes of a latently infected pleural effusion lymphoma cell line BCBL1. LANA bound with high occupancy to the KSHV genome terminal repeats (TR), and to a few minor binding sites within the latency control region encoding that LANA transcript. We identified 256 LANA binding peaks with p < 0.01 and overlap in two independent ChIP-Seq experiments. We validated several of the high-occupancy binding sites by conventional ChIP assays and quantitative PCR. Two candidate DNA sequence motifs were identified, and confirmed to bind purified LANA protein, although with weaker affinity compared to viral TR binding site. More than half of the LANA binding sites (170/256) could be mapped to within 2.5 kb of a cellular gene transcript. Pathways and Gene Ontogeny (GO) analysis revealed that LANA binds to genes within the p53 and TNF regulatory network. Further analysis revealed partial overlap of LANA binding sites with STAT1 binding sites in several interferon (IFN)-g regulated genes. We show that ectopic expression of LANA can down-modulate IFN-g mediated activation of a subset of genes, including the TAP1 peptide transporter and proteasome subunit beta type 9 (PSMB9) required for class I antigen presentation. Our data provides a potential mechanism through which LANA may regulate several host cell pathways by direct binding to gene regulatory elements. Study of KSHV LANA
Project description:Latency-associated nuclear antigen (LANA), a multifunctional protein expressed by the Kaposi sarcoma-associated herpesvirus (KSHV) in latently-infected cells, is required for stable maintenance of the viral episome. This is mediated by two interactions: LANA binds to specific sequences (LBS1 and 2) on viral DNA, and also engages host histones, tethering the viral genome to host chromosomes in mitosis. LANA has also been suggested to affect host gene expression, but both the mechanism(s) and role of this dysregulation in KSHV biology remain unclear. Here we have examined LANA interactions with host chromatin on a genome-wide scale using ChIP-seq, and show that LANA predominantly targets human genes near their transcriptional start sites (TSSs). These host LANA-binding sites are generally found within transcriptionally active promoters and display striking overrepresentation of a consensus DNA sequence virtually identical to the LBS1 motif in KSHV DNA. Comparison of the ChIP-seq profile with whole transcriptome (RNA-seq) data reveals that few of the genes that are differentially regulated in latent infection are occupied by LANA at their promoters. This suggests that direct LANA binding to promoters is not the prime determinant of altered host transcription in KSHV-infected cells. Most surprisingly, the association of LANA to both host and viral DNA is strongly disrupted during the lytic cycle of KSHV. This disruption can be prevented by the inhibition of viral DNA synthesis, suggesting the existence of novel and potent regulatory mechanisms linked to either viral DNA replication or late gene expression. Profiling of KSHV LANA positioning on the host genome and examination of gene expression from promoters bound by KSHV LANA.
Project description:Gene expression profiling of three PEL cell lines compare to three Burkitt's lymphoma lines to figure out the changed genes under KSHV latent infection. Gene expression profiling of two time points on TIVE cells after infection by KSHV compare to TIVE cell without infection by KSHV to figure out the changed genes on TIVE cell under latent infection of KSHV. Gene expression profiling of four time points after inducing recombinant LANA protein expression when compare to no inducing BJAB/Tet-On/LANA cells to figure out the changed genes under the latency-associate nuclear antigen (LANA) of KSHV expression. Gene expression profiling of three time points after inducing recombinant LANA protein expression when compare to no inducing Jurkat/Tet-On/LANA cell line to figure out the changed genes under the latency-associate nuclear antigen (LANA) of KSHV expression. Gene expression profiling of two time points after inducing recombinant LANA protein expression when compare to no inducing 293/Tet-On/LANA cell line to figure out the changed genes under the latency-associate nuclear antigen (LANA) of KSHV expression. Keywords = TIVE Keywords = KSHV Keywords = LANA Keywords = PEL Keywords = BJAB Keywords = 293 Keywords = Jurkat Keywords: other
Project description:LANA is essential for tethering the KSHV genome to metaphase chromosomes and for modulating host-cell gene expression, but the binding sites in the host-chromosome remain unknown. Here, we use LANA-specific chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) to identify LANA binding sites in the viral and host-cell genomes of a latently infected pleural effusion lymphoma cell line BCBL1. LANA bound with high occupancy to the KSHV genome terminal repeats (TR), and to a few minor binding sites within the latency control region encoding that LANA transcript. We identified 256 LANA binding peaks with p < 0.01 and overlap in two independent ChIP-Seq experiments. We validated several of the high-occupancy binding sites by conventional ChIP assays and quantitative PCR. Two candidate DNA sequence motifs were identified, and confirmed to bind purified LANA protein, although with weaker affinity compared to viral TR binding site. More than half of the LANA binding sites (170/256) could be mapped to within 2.5 kb of a cellular gene transcript. Pathways and Gene Ontogeny (GO) analysis revealed that LANA binds to genes within the p53 and TNF regulatory network. Further analysis revealed partial overlap of LANA binding sites with STAT1 binding sites in several interferon (IFN)-g regulated genes. We show that ectopic expression of LANA can down-modulate IFN-g mediated activation of a subset of genes, including the TAP1 peptide transporter and proteasome subunit beta type 9 (PSMB9) required for class I antigen presentation. Our data provides a potential mechanism through which LANA may regulate several host cell pathways by direct binding to gene regulatory elements.
Project description:Higher order genome structure influences the transcriptional regulation of cellular genes through the juxtaposition of regulatory elements, such as enhancers, close to promoters of target genes. While enhancer activation has emerged as an important facet of Kaposi’s sarcoma-associated herpesvirus (KSHV) biology, mechanisms controlling enhancer-target gene expression remain obscure. Here, we discover that the KSHV genome tethering protein latency-associated nuclear antigen (LANA) potentiates enhancer-target gene expression in primary effusion lymphoma (PEL), a highly aggressive B cell lymphoma causally associated with KSHV. Genome-wide analyses demonstrate increased levels of enhancer RNA transcription as well as activating chromatin marks at LANA bound enhancers. 3D-genome conformation analyses identified genes critical for latency and tumorigenesis as targets of LANA occupied enhancers, and LANA depletion results in their downregulation. These findings reveal a previously unknown mechanism in enhancer-gene coordination and describe a role through which the main KSHV tethering protein regulates essential gene expression in PEL.
Project description:Latency-associated nuclear antigen (LANA), a multifunctional protein expressed by the Kaposi sarcoma-associated herpesvirus (KSHV) in latently-infected cells, is required for stable maintenance of the viral episome. This is mediated by two interactions: LANA binds to specific sequences (LBS1 and 2) on viral DNA, and also engages host histones, tethering the viral genome to host chromosomes in mitosis. LANA has also been suggested to affect host gene expression, but both the mechanism(s) and role of this dysregulation in KSHV biology remain unclear. Here we have examined LANA interactions with host chromatin on a genome-wide scale using ChIP-seq, and show that LANA predominantly targets human genes near their transcriptional start sites (TSSs). These host LANA-binding sites are generally found within transcriptionally active promoters and display striking overrepresentation of a consensus DNA sequence virtually identical to the LBS1 motif in KSHV DNA. Comparison of the ChIP-seq profile with whole transcriptome (RNA-seq) data reveals that few of the genes that are differentially regulated in latent infection are occupied by LANA at their promoters. This suggests that direct LANA binding to promoters is not the prime determinant of altered host transcription in KSHV-infected cells. Most surprisingly, the association of LANA to both host and viral DNA is strongly disrupted during the lytic cycle of KSHV. This disruption can be prevented by the inhibition of viral DNA synthesis, suggesting the existence of novel and potent regulatory mechanisms linked to either viral DNA replication or late gene expression.
Project description:Gene expression profiling of three PEL cell lines compare to three Burkitt's lymphoma lines to figure out the changed genes under KSHV latent infection. Gene expression profiling of two time points on TIVE cells after infection by KSHV compare to TIVE cell without infection by KSHV to figure out the changed genes on TIVE cell under latent infection of KSHV. Gene expression profiling of four time points after inducing recombinant LANA protein expression when compare to no inducing BJAB/Tet-On/LANA cells to figure out the changed genes under the latency-associate nuclear antigen (LANA) of KSHV expression. Gene expression profiling of three time points after inducing recombinant LANA protein expression when compare to no inducing Jurkat/Tet-On/LANA cell line to figure out the changed genes under the latency-associate nuclear antigen (LANA) of KSHV expression. Gene expression profiling of two time points after inducing recombinant LANA protein expression when compare to no inducing 293/Tet-On/LANA cell line to figure out the changed genes under the latency-associate nuclear antigen (LANA) of KSHV expression.
Project description:Human SLK cells were infected with wildtype (wt) and LANA knockout (KO) Kaposi's sarcoma-associated herpesvirus (KSHV), separately for 3 days. Cellular gene expression changes were identified upon the wild type and LANA KO KSHV virus infection compared to the uninfected SLK cells using the human gene expression microarray U133plus2.0. 2 independent biological replicates from uninfected SLK cells, wild type KSHV infected SLK cells at 72hrs post-infection (hpi) , and LANA KO infected SLK cells at 72 hrs post-infection were collected and RNA was prepared for microarray analysis.
Project description:Human SLK cells were infected with wildtype (wt) and LANA knockout (KO) Kaposi's sarcoma-associated herpesvirus (KSHV), separately for 3 days. Cellular gene expression changes were identified upon the wild type and LANA KO KSHV virus infection compared to the uninfected SLK cells using the human gene expression microarray U133plus2.0.