Expression data from ELK3 knocked down MDA-MB-231 cell line.
Ontology highlight
ABSTRACT: Triple-negative breast cancer is a highly aggressive tumor subtype that lacks effective therapeutic targets. Here, we show that ELK3 is overexpressed in a subset of breast cancers, in particular basal-like and normal-like/claudin-low cell lines. Suppression of ELK3 in MDA-MB-231 cells led to transdifferentiation from an invasive mesenchymal phenotype to a non-invasive epithelial phenotype both in vitro and in vivo. Suppression of ELK3 results in the extensive changes in genome expression profiles. Among these, GATA3, a master suppressor of metastasis, was epigenetically activated and we found that suppression of GATA3 led to the restoration of migration and invasion. These results suggest that the ELK3-GATA3 axis is a major pathway that promotes metastasis of MDA-MB-231 cells. Retrovirus expressing shRNA of ELK3 was transduced into MDA-MB-231 cell line and stable cell line of which ELK3 is suppressed more than 50% was selected by the drug selection (Puromycin).
Project description:Triple-negative breast cancer is a highly aggressive tumor subtype that lacks effective therapeutic targets. Here, we show that ELK3 is overexpressed in a subset of breast cancers, in particular basal-like and normal-like/claudin-low cell lines. Suppression of ELK3 in MDA-MB-231 cells led to transdifferentiation from an invasive mesenchymal phenotype to a non-invasive epithelial phenotype both in vitro and in vivo. Suppression of ELK3 results in the extensive changes in genome expression profiles. Among these, GATA3, a master suppressor of metastasis, was epigenetically activated and we found that suppression of GATA3 led to the restoration of migration and invasion. These results suggest that the ELK3-GATA3 axis is a major pathway that promotes metastasis of MDA-MB-231 cells.
Project description:Intercellular communication is critical for integrating complex signals in multicellular eukaryotes. Vascular endothelial cells and T lymphocytes closely interact during the recirculation and trans-endothelial migration of T cells. In addition to direct cell-cell contact, we show that T cell derived extracellular vesicles can interact with endothelial cells and modulate their cellular functions. Thrombospondin-1 and its receptor CD47 are expressed on exosomes/ectosomes derived from T cells, and these extracellular vesicles are internalized and modulate signaling in both T cells and endothelial cells. Extracellular vesicles released from cells expressing or lacking CD47 differentially regulate activation of T cells induced by engaging the T cell receptor. Similarly, T cell-derived extracellular vesicles modulate endothelial cell responses to vascular endothelial growth factor and tube formation in a CD47-dependent manner. Uptake of T cell derived extracellular vesicles by recipient endothelial cells globally alters gene expression in a CD47-dependent manner. CD47 also regulates the mRNA content of extracellular vesicles in a manner consistent with some of the resulting alterations in target endothelial cell gene expression. Therefore, the thrombospondin-1 receptor CD47 directly or indirectly regulates intercellular communication mediated by the transfer of extracellular vesicles between vascular cells. Treatment with B6H12 antibody inhibited co-immunoprecipitation of EGFR with CD47 and inhibited EGF-induced EGFR tyrosine phosphorylation. B6H12 treatment of bCSC also suppressed asymmetric cell division and cell proliferation and up-regulated caspase 3/7 activity. Correspondingly, caspase-7 cleavage in human breast cancers correlated with CD47 expression. Our data shows that B6H12 specifically targets bCSCs but not differentiated cancer cells, and this CD47 signaling is independent of SIRPα. Three replicates of each condition were generated. Three replicates of each MDA-231 attached cells (differentiated), MDA-231 in suspension cells (bCSC), MDA-231 in suspension cells (bCSC) treated with Control Antibody and MDA-231 in suspension cells (bCSC) treated with B6H12 Antibody.
Project description:To determine the differentially expressed miRNAs in MDA-MB-231-GATA3 cells vs. MDA-MB-231-Control cells Pooled polyclonal cells from MDA-MB-231 breast cancer cells +/- GATA3 over-expression were analyzed for miRNA expression
Project description:We investigated the differentially expressed genes between MCF-7 and MCF-7-14, and estimated the similarities of expression profiles between MCF-7-14 and MDA-MB-231. We identified genes differentially expressed between non-invasive/non-metastatic and invasive/metastatic breast cancer cells. Experiment Overall Design: We performed microarray analysis as following design: MCF-7 versus MCF-7-14 versus MDA-MB-231 cells.
Project description:MicroRNAs are noncoding, endogenous small RNAs that regulate target genes by cleavage of the targeted mRNA or translational repression. We investigated the microRNAome using 2-color microarrays in a highly invasive human breast cancer cell line, MDA-MB-231 (sub line 4175) and a non-invasive breast epithelial cell line, MCF10A. We found 13 miRNAs that were up-regulated and 9 were down-regulated significantly in 4175 cells (p <0.05, fold change >2) compared with MCF10A cells. We compared the highly metastatic human breast cell lines MDA-MB-231 (4175 subline) with non-metastatic MCF10A cell lines. Two 4175 sublines and two MCF10A cell lines, independently grown and harvested. Dye swap was performed.
Project description:Active HUMSC with distinct binding rate to MDA MB-231 breast cancer cells, distinct ability in suppressing tumorigenesis,distinct cell in cell features and distinct features under TEM then inactive HUMSC We used microarrays to detail the difference gene expression between active HUMSC and inactive HUMSC HUMSC with high MDA MB-231 breast cancer cells suppression rate was selective as active HUMSC and HUMSC with low MDA MB-231 breast cancer cells suppression rate was selective as inactive HUMSC
Project description:In order to identify patterns of gene expression that are associated with the putative tumor suppressor gene ITIH5 mediated suppression of breast cancer metastatic growth, we performed a transcriptomic micro-array analysis of the MDA-MB-231 wildtype, three independent highly aggressive MDA-MB-231-mock clones and four independent weak aggressive MDA-MB-231-ITIH5 clones. Related methylation profiling data are found under accession <a href='../E-MTAB-5081/'>E-MTAB-5081</a>.
Project description:The long-term goal of our study is to understand the genetic and epigenetic mechanisms of breast cancer metastasis in human and to discover new possible genetic markers for use in clinical practice. We have used microarray technology (Human OneArray microarray, phylanxbiotech.com) to compare gene expression profiles of non-invasive MCF-7 and invasive MDA-MB-231 cells exposed to dioscin (DS), a steroidal saponin isolated from the roots of wild yam, (Dioscorea villosa). Initially the differential expression of genes (DEG) was identified that followed pathway enrichment analysis (PEA). Of the genes queried on OneArray, we identified 4641 DEG changed between MCF-7 and MDA-MB-231 cells (vehicle-treated) with cut-off log2 |fold change|â§ 1. Among these genes, 2439 genes are upregulated and 2002 genes are downregulated. DS exposure (2.30 ïM, 72 h) to these cells identified 801 (MCF-7) and 96 (MDA-MB-231) DEG that showed significant difference compared to untreated cells (p<0.05). Within these gene sets, DS is able to upregulate 395 genes and downregulate 406 genes in MCF-7 and upregulate 36 and downregulate 60 genes in MDA-MB-231 cells. Further comparison of DEG between MCF-7 and MDA-MB-231 cells exposed to DS identified 3626 DEG of which 1700 were upregulated and 1926 genes were down-regulated. From PEA, 12 canonical pathways were significantly altered between these two cell lines (MCF-7 and MDA-MB-231). However, no alteration in any of these pathways was noticed in MCF-7 cell, while in MDA-MB-231 cells only MAPK pathway showed significant alteration. When PEA comparison was made on DS exposed cells, it was observed that only 2 pathways were significantly affected. Further, to identify shared DEG, which are targeted by DS and overlapped in both MCF-7 and MDA-MB-231 cells, we performed intersection analysis (Venn diagram). We found that only 7 DEG are overlapped of which six are reported in the database. This study highlights the diverse gene networks and pathways through which DS exhibits its effect on breast cancer cells. Two condition experiment. Human breast cancer Cell line MCF-7 groups: Vehicle control and dioscin treated; Human breast cancer cell line MDA-MB-231 cell group; vehicle control and dioscin-treated. Biological replicates: MCF-7 control compared to MCF-7 dioscin treated; MDA-MB-231 control compated to MDA-MB-231 dioscin-treated; MCF-7 control compared to MDA-MB-231 control; MCF-7 dioscin treated compared to MDA-MB-231 dioscin-treated. duplicate array
Project description:We performed gene expression profiling on the MDA-MB-231 and MDA-MB-436 human breast cancer cell lines following siRNA-mediated inhibition of Fn14 expression as an approach to identify the mechanistic basis for Fn14 regulation of invasive capacity. Keywords: siRNA-mediated inhibition