Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Transcription profiling of human pharyngeal epithelial cells response to adherent pneumococci


ABSTRACT: Infection of the human host by Streptococcus pneumoniae begins with colonization of the nasopharynx, which is mediated by adherence of bacteria to respiratory epithelium. Several studies have indicated an important role for the pneumococcal capsule in this process. Here, we used microarrays to characterize the in vitro transcriptional response of human nasopharyngeal epithelial Detroit 562 cells to adherence of serotype 2-encapsulated strain D39, serotype 19F-encapsulated strain G54, serotype 4-encapsulated strain TIGR4, and their nonencapsulated derivatives (delta-cps). In total, 322 genes were found to be upregulated in response to adherent pneumococci. Twenty-two genes were commonly induced, including those encoding several cytokines (e.g., IL-1-beta, IL-6), chemokines (e.g., IL-8, CXCL1/2), and transcriptional regulators (e.g., FOS), consistent with an innate immune response mediated by Toll-like receptor signaling. Interestingly, 85% of genes was induced specifically by one or more encapsulated strains, suggestive of a capsule-dependent response. Importantly, purified capsular polysaccharides alone had no effect. Over a third of these loci encoded products predicted to be involved in transcriptional regulation and signal transduction, in particular MAPK signaling pathways. Real-time PCR of a subset of ten genes confirmed microarray data and showed a time-dependent upregulation of especially innate immunity genes. Downregulation of epithelial genes was most pronounced upon adherent D39delta-cps, as 68% of the 161 genes identified was only repressed using this nonencapsulated strain. In conclusion, we identified a subset of host genes specifically induced by encapsulated strains during in vitro adherence, and have demonstrated the complexity of interactions occurring during the initial stages of pneumococcal infection. Experiment Overall Design: We used three different pneumococcal strains and their isogenic nonencapsulated derivatives (delta-cps): serotype 2-encapsulated strain D39, serotype 19F-encapsulated strain G54, and serotype 4-encapsulated strain TIGR4. All experiments were performed in triplicate (3 independent biological replicates) and compared to uninfected control Detroit 562 cells. Bacteria were allowed to adhere to the epithelial cells for 2 hours, after which the transcriptional response of the Detroit cells was analyzed using Affymetrix Human U133 Plus GeneChips. In addition to the 6 strains mentioned above, we included transcriptional analysis of the epithelial cell response to low-dose D39delta-cps (giving adherence equivalent to wild-type D39) and purified type 2 capsular polysaccharides.

ORGANISM(S): Homo sapiens

SUBMITTER: Hester Bootsma 

PROVIDER: E-GEOD-8527 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Analysis of the in vitro transcriptional response of human pharyngeal epithelial cells to adherent Streptococcus pneumoniae: evidence for a distinct response to encapsulated strains.

Bootsma Hester J HJ   Egmont-Petersen Michael M   Hermans Peter W M PW  

Infection and immunity 20070820 11


Infection of the human host by Streptococcus pneumoniae begins with colonization of the nasopharynx, which is mediated by the adherence of bacteria to the respiratory epithelium. Several studies have indicated an important role for the pneumococcal capsule in this process. Here, we used microarrays to characterize the in vitro transcriptional response of human pharyngeal epithelial Detroit 562 cells to the adherence of serotype 2 encapsulated strain D39, serotype 19F encapsulated strain G54, ser  ...[more]

Similar Datasets

2007-10-01 | GSE8527 | GEO
2006-10-09 | GSE5375 | GEO
2019-03-11 | GSE123437 | GEO
2019-05-13 | GSE124170 | GEO
2013-09-30 | E-GEOD-44947 | biostudies-arrayexpress
2021-09-02 | GSE173392 | GEO
2008-11-19 | GSE13505 | GEO
2006-10-28 | GSE6139 | GEO
2006-12-24 | GSE6137 | GEO
2022-04-02 | GSE199605 | GEO