Transcription profiling time series of mouse bone marrow macrophages treated with macrophage colony stimulating factor or granulocyte colony stimulating factor
Ontology highlight
ABSTRACT: BM monocytes were treated with 20ug/ml of M-CSF (macrophage colony stimulating factor) or GM-CSF (granulocyte monocyte colony stimulating factor) for 0, 6, 12 hours before harvesting RNA for analysis
Project description:Neutrophil homeostasis is maintained, in part, by the regulated release of neutrophils from the bone marrow. Constitutive expression of the chemokine CXCL12 by bone marrow stromal cells provides a key retention signal for neutrophils in the bone marrow through activation of its receptor CXCR4. Herein, we show that the ELR chemokines CXCL1 and CXCL2 are constitutively expressed by bone marrow endothelial cells and osteoblasts, and CXCL2 expression is induced in endothelial cells during granulocyte colony-stimulating factor (G-CSF)-induced neutrophil mobilization. Neutrophils lacking CXCR2, the receptor for CXCL1 and CXCL2, are preferentially retained in the bone marrow, reproducing a myelokathexis phenotype. Transient disruption of CXCR4 failed to mobilize CXCR2 neutrophils. However, doubly deficient neutrophils (CXCR2-/- CXCR4-/-) displayed constitutive mobilization, showing that CXCR4 plays a dominant role. Collectively, these data suggest that CXCR2 signaling is a second chemokine axis that interacts antagonistically with CXCR4 to regulate neutrophil release from the bone marrow. We used gene expression microarrays to determine the changes in osteoblasts and bone marrow endothelial cells after G-CSF treatment. 3 untreated and G-CSF-treated osteoblast samples and 4 untreated and G-CSF-treated endothelial samples.
Project description:Neutrophil homeostasis is maintained, in part, by the regulated release of neutrophils from the bone marrow. Constitutive expression of the chemokine CXCL12 by bone marrow stromal cells provides a key retention signal for neutrophils in the bone marrow through activation of its receptor CXCR4. Herein, we show that the ELR chemokines CXCL1 and CXCL2 are constitutively expressed by bone marrow endothelial cells and osteoblasts, and CXCL2 expression is induced in endothelial cells during granulocyte colony-stimulating factor (G-CSF)-induced neutrophil mobilization. Neutrophils lacking CXCR2, the receptor for CXCL1 and CXCL2, are preferentially retained in the bone marrow, reproducing a myelokathexis phenotype. Transient disruption of CXCR4 failed to mobilize CXCR2 neutrophils. However, doubly deficient neutrophils (CXCR2-/- CXCR4-/-) displayed constitutive mobilization, showing that CXCR4 plays a dominant role. Collectively, these data suggest that CXCR2 signaling is a second chemokine axis that interacts antagonistically with CXCR4 to regulate neutrophil release from the bone marrow. We used gene expression microarrays to determine the changes in osteoblasts and bone marrow endothelial cells after G-CSF treatment.
Project description:Granulocyte colony stimulating factor receptor (G-CSFR) plays important role in the production of neutrophils from hematopoietic stem cells. Mutated form of the receptor has been directly associated with two distinct malignant phenotype in patients, e.g. acute myeloid leukemia (AML) and chronic neutrophilic leukemia (CNL). However, the signaling mechanism of the mutated G-CSFRs is not well understood. Here, we describe a comprehensive SILAC based quantitative phosphoproteomic analysis of the mutated G-CSFRs compared to the normal receptor using BaF3 cell line based in vitro model system. High pH reversed phase concatenation and Titanium Dioxide Spin Tip column were utilized to increase the dynamic range and detection of the phosphoproteome of G-CSFRs. The dataset was further analyzed using several computational and bioinformatics tools. Overall, this dataset is a first of any phosphoproteomics analysis of granulocyte colony stimulating factor receptors in the normal and disease associated mutations. We anticipate that our dataset will have a strong potential to decipher the phospho-signaling differences between the normal and malignant G-CSFR biology with therapeutic implications.
Project description:RATIONALE: Monoclonal antibodies can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Colony-stimulating factors such as G-CSF may increase the number of immune cells found in bone marrow or peripheral blood, and may help a person’s immune system kill more tumor cells.
PURPOSE: Phase II trial to study the effectiveness of monoclonal antibody therapy plus G-CSF in treating patients with metastatic colorectal cancer that has not responded to treatment with fluorouracil.
Project description:Abstract Background Psychostimulant use disorder is a major public health issue, and despite the scope of the problem there are currently no FDA approved treatments. There would be tremendous utility in development of a treatment that could help patients both achieve and maintain abstinence. Previous work from our group has identified granulocyte-colony stimulating factor (G-CSF) as a neuroactive cytokine that alters behavioral response to cocaine, increases synaptic dopamine release, and enhances cognitive flexibility. Here, we investigate the role of G-CSF in affecting extinction and reinstatement of cocaine-seeking and perform detailed characterization of its proteomic effects in multiple limbic substructures. Methods Sprague-Dawley rats were injected with PBS or G-CSF during (1) extinction or (2) abstinence from cocaine self-administration, and drug seeking behavior was measured. Quantitative assessment of changes in the proteomic landscape in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) were performed via data-independent acquisition (DIA) mass spectrometry analysis. Results Administration of G-CSF during extinction accelerated the rate of extinction, and administration during abstinence attenuated cue-induced cocaine-seeking. Analysis of global protein expression demonstrated that G-CSF regulated proteins primarily in mPFC that are critical to glutamate signaling and synapse maintenance. Conclusion Taken together, these findings support G-CSF as a viable translational research target with the potential to reduce drug craving or seeking behaviors. Importantly, recombinant G-CSF exists as an FDA-approved medication which may facilitate rapid clinical translation. Additionally, using cutting-edge multi-region discovery proteomics analyses, these studies identify a novel mechanism underlying G-CSF effects on behavioral plasticity.
Project description:Mononuclear cells were isolated from granulocyte colony stimulating factor mobilised peripheral blood. CD34+ cells were selected and separated into adherent and non-adherent cells. Adherent and non-adherent samples were amplified and labelled using two IVT cycles, and gene expression profiling was performed by hybridisation to Affymetrix Human Genome U133 Plus2.0 Arrays.
Project description:Granulocyte-Macrophage colony stimulating factor (GM-CSF) devlops heterogenous myeloid cell populations from bone marrow progenitor cells. In vitro generated bone marrow derived cells are excellent sources for obtaining dendritic cells or macrophages, but it is still not clear about the exact mixed population characteristics of GM-CSF grown cells. We revealed here that GM-CSF grown bone marrow cell derived attaching cells were composed of dendritic cells (GM-BMDC) as well as macrophages (GM-BMM). We compared the transcriptome profiles of these cell populations as well as M-CSF grown bone marrow derived macrophages (M-BMM). We used microarrays to detail the global profile of gene expressions between three populations of CSF-grown bone marrow derived cells: GM-CSF derived dendritic cells (GM-BMDC), GM-CSF derived macrophages (GM-BMM) and M-CSF derived macrophages (M-BMM).
Project description:Granulocyte-Macrophage colony stimulating factor (GM-CSF) devlops heterogenous myeloid cell populations from bone marrow progenitor cells. In vitro generated bone marrow derived cells are excellent sources for obtaining dendritic cells or macrophages, but it is still not clear about the exact mixed population characteristics of GM-CSF grown cells. We revealed here that GM-CSF grown bone marrow cell derived attaching cells were composed of dendritic cells (GM-BMDC) as well as macrophages (GM-BMM). We compared the transcriptome profiles of these cell populations as well as M-CSF grown bone marrow derived macrophages (M-BMM). We used microarrays to detail the global profile of gene expressions between three populations of CSF-grown bone marrow derived cells: GM-CSF derived dendritic cells (GM-BMDC), GM-CSF derived macrophages (GM-BMM) and M-CSF derived macrophages (M-BMM). Bone marrow cells were differentiated for 7 days with 25 ng/ml GM-CSF or 20% L cell conditioned media as a M-CSF supplier. GM-BMDCs were sorted from MHCIIhighF4/80low population and GM-BMMs were sorted in the MHCIIlowF4/80high population. M-BMMs were sorted from CD11b+F4/80+ population.
Project description:Although the role of macrophage colony stimulating factor (M-CSF/CSF-1) in homeostasis and disease processes has been studied extensively in mice, little is known of the impact of this cytokine on differentiated human macrophages. Here we show that, in contrast to its effects on mouse bone marrow-derived macrophages (BMM), CSF-1 did not induce expression of urokinase plasminogen activator mRNA, repress expression of apolipoprotein E mRNA, or prime LPS-induced TNF secretion in human monocyte-derived macrophages (HMDM) from several independent donors. Using expression profiling, we show that CSF-1 dynamically regulated the expression of several genes that encode chemokines and chemokine receptors (e.g. CXCL10/IP-10, CXCL2, CCL7, SDF2L1, CXCR4) in HMDM. CSF-1 also upregulated the expression of several genes encoding enzymes of the cholesterol biosynthetic pathway (HMGCR, MVD, IDI1, FDPS, SQLE, CYP51A1, EBP, NSDHL, DHCR7 and DHCR24), while expression of ABCG1, encoding a cholesterol efflux transporter, was repressed. Although the CSF-1/CSF-1R system has been proposed as a target for the treatment of inflammatory and metastatic disease based on studies in rodents, this is the first systematic analysis of the effects of CSF-1 on mature human macrophages. Our data demonstrates that CSF-1 represents a further link between inflammation and cardiovascular disease, inflammtion and immunity. Keywords: Stimulus response