Hi-C and capture Hi-C for HPV16 infected human W12 cervical cell lines and normal cervical tissue
Ontology highlight
ABSTRACT: Two biological replicates Hi-C and HPV16-specific Region Capture Hi-C libraries were prepared for each of the W12 cell lines. Capture Hi-C was performed using HPV16-specific RNA baits. Hi-C libraries alone were prepared from normal cervix tissue (Ncx).
Project description:HPV integrated site capture (HISC) protocol used to detect HPV16 integration breakpoints in the genomes of W12 cell lines. Biotinylated HPV16-specific RNA baits were used to capture HPV16-human breakpoint junctions in genomic DNA.
Project description:Human SGBS preadipocytes were differentiated into adipocytes, and human iPSCs were differentiated into hypothalamic neurons. Cells were collected for in situ promoter capture Hi-C [PMID: 29988018] at several differentiation stages. The differentiations were performed in one biological replicate, with two technical replicates (different wells of the differentiation that were also processed individually during library preparation). SGBS Day0: Represents the preadipocyte state. SGBS Day2: Represents immature adipocytes. SGBS Day8: Represents early mature adipocytes. SGBS Day16: Represents mature adipocytes. Hypothalamic Day 12: Represents early hypothalamic neurons. Hypothalamic Day 16: Represents mid hypothalamic neurons. Hypothalamic Day 27: Represents mature hypothalamic neurons.
Project description:We generated Hi-C interaction maps of iPSC and iPSC-derived cardiomyocytes as a resource to help identifying regulatory elements and their target genes in these tissues.
Project description:Chromatin organisation of trophoblast stem cells (TSC) were compared with that of embryonic stem cells (ESC). The method enriches Hi-C libraries, to detect promoter interactions at restriction fragment level. We prepared Hi-C libraries from TSC and ESC (serum grown) samples and enriched them with a promoter capture bait system that captures ~22.000 promoters. Promoter interactions were then analysed using the GOTHiC pipeline.
Project description:HiCUP is a pipeline for processing sequence data generated by Hi-C, a technique used to investigate the three-dimensional organisation of a genome. The pipeline maps data to a specified reference genome and removes artefacts that would otherwise hinder subsequent analysis. HiCUP also provides an easy-to-interpret yet detailed quality control report that may be used by researchers to refine their experimental protocol for future studies. The software is freely available and has already been used for processing Hi-C data in several recently published peer-reviewed research articles. This experiment investigates the impact of using HiCUP to remove putative PCR amplification products in heavily duplicated Capture Hi-C libraries. Examination of three Capture Hi-C libraries
Project description:Genome organization influences transcriptional regulation by facilitating interactions between gene promoters and distal regulatory elements. To analyse distal promoter contacts mediated by the PRC1 complex we used Capture Hi-C (CHi-C) to enrich for promoter-interactions in a HiC library in Ring1a KO and Ring1a/b dKO mouse ES cells.
Project description:Capture Hi-C (CHi-C) is a state-of-the art method for profiling chromosomal interactions involving targeted regions of interest (such as gene promoters) globally and at high resolution. Signal detection in CHi-C data involves a number of statistical challenges that are not observed when using other Hi-C-like techniques. We present a background model, and algorithms for normalisation and multiple testing that are specifically adapted to CHi-C experiments, in which many spatially dispersed regions are captured, such as in Promoter CHi-C. We implement these procedures in CHiCAGO (http://regulatorygenomicsgroup.org/chicago), an open-source package for robust interaction detection in CHi-C. We validate CHiCAGO by showing that promoter-interacting regions detected with this method are enriched for regulatory features and disease-associated SNPs. Three human CHi-C biological replicates were generated (comprising 1, 2and 3 technical replicates). Two mouse CHi-C biological replicates were generated (both comprising three technical replicates) and a mouse Hi-C dataset. The publicly available HiCUP pipeline (doi: 10.12688/f1000research.7334.1) was used to process the raw sequencing reads. This pipeline was used to map the read pairs against the mouse (mm9) and human (hg19) genomes, to filter experimental artefacts (such as circularized reads and re-ligations), and to remove duplicate reads. For the CHi-C data, the resulting BAM files were processed into CHiCAGO input files, retaining only those read pairs that mapped, at least on one end, to a captured bait. CHiCAGO then identified Hi-C restriction fragments interacting, with statistical significant, to captured baits.
Project description:We generated an interaction map using capture in situ Hi-C in human iPSC-derived cardiomyocytes Differentiation of cardiomyocytes from iPSC followed by capture in situ Hi-C
Project description:This study uncovers a temporal hierarchy of chromatin re-organization during G1 that is linked to the developmental and temporal control of replication timing, revealing a novel link between development and genome organization. Analysis of time-course 4C-seq for several baits to study dynamic changes in chromatin organization during early G1
Project description:The development of the human malaria parasite Plasmodium falciparum is controlled by coordinated changes in gene expression throughout its complex life cycle, but the corresponding regulatory mechanisms are incompletely understood. To study the relation between genome architecture and gene regulation in Plasmodium, we studied the genome structure of P. falciparum at three time points during its erythrocytic (asexual) cycle. Using chromosome conformation capture coupled with next-generation sequencing technology (Hi-C), we obtained high-resolution chromosomal contact maps, which we then used to construct a consensus three-dimensional genome structure for each time point. We observe strong clustering of centromeres, telomeres, ribosomal DNA and virulence genes, resulting in a complex architecture that cannot be explained by a simple volume exclusion model. Internal virulence gene clusters appear to be an important factor in shaping the genome architecture as they exhibit domain-like structures similar to topological domains in mammalian genomes. Midway during the cell cycle, at the highly transcriptionally active trophozoite stage, the genome adopts a more open chromatin structure with increased chromosomal intermingling. In addition, we observed reduced expression of genes located in spatial proximity to the repressive subtelomeric center, and colocalization of distinct groups of parasite-specific genes with coordinated expression profiles. Overall, our results are indicative of a strong association between the P. falciparum spatial genome organization and gene expression. Understanding the molecular processes involved in genome conformation dynamics could contribute to the discovery of novel antimalarial strategies. Analysis of the spatial organization of the P. falciparum genome at three stages of the erythrocytic cycle using chromosome conformation capture coupled with next generation sequencing (Hi-C). As a control, we included one sample for which chromatin contacts were not preserved by crosslinking of DNA and proteins.