Project description:RNA sequencing of human neonatal Naive CD4+ T cells and adult Naive CD4+ T cells treated with Scr or LINE1 ASO to assess functional relevance of LINE1 absence in newborns.
Project description:RNA sequencing of the chromatin associated RNA and nucleoplasm associated RNA of Naive CD4+ T cells to identify novel chromatin associated RNAs containing TEs. RNA sequencing of Naive CD4+ T cells or Activated Naive CD4+ T cells treated with Scr or LINE1 antisense oligonucleotides (ASO).
Project description:We studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale TAD repositioning and alterations of tissue-restricted genomic neighborhoods and chromatin loops, effectively erasing the somatic cell specific genome structures while establishing an embryonic stem cell-like 3D genome. Yet, early passage iPSCs carry topological hallmarks that enable discerning their cell-of-origin. These hallmarks are not remnants of somatic chromosome topologies. Instead, the distinguishing topological features are acquired during reprogramming, as we also find for cell-of-origin dependent gene expression patterns. ChIPseq for CTCF and H3K27ac was performed on early and late iPS cells derived from different founders
Project description:While genome sequencing has identified numerous non-coding alterations between primate species, which of these are regulatory and potentially relevant to the evolution of the human brain is unclear. Here, we annotate cis-regulatory elements (CREs) in the human, rhesus macaque and chimpanzee genome using ChIP-sequencing in different anatomical parts of the adult brain. We find high similarity in the genomic positioning of CREs between rhesus macaque and humans, suggesting that the majority of these elements were already present in a common ancestor 25 million years ago. Most of the observed regulatory changes between humans and rhesus macaque occurred prior to the ancestral separation of humans and chimpanzee, leaving a modest set of regulatory elements with predicted human-specificity. Our data refine previous predictions and hypotheses on the consequences of genomic changes between primate species, and allow the identification of regulatory alterations relevant to the evolution of the brain. ChIP-Sequencing for H3K27ac on 8 distinct brain regions from human (three biological replicates per brain region), chimpanzee (two biological replicates per brain region) and rhesus macaque (three biological replicates per brain region).
Project description:We applied ChIP-Seq on two histone marks: H3K4me1 and H3K27ac in healthy human neutrophils. After peak calling, we obtained the peak regions enriched with H3K4me1 and H3K27ac histone marks and identifed aciive enhancers (H3K27ac+/H3K4me1+) and H3K27ac active enhancers (H3K27ac+/H3K4me1-) in human neutrophils and checked whether those enhancers are located in the LD blocks of 22 SNPs associtated with Juvenile Idiopathic Arthritis. Identification of active enhancers in human neutrohils
Project description:Human FOXP3 antisense oligonucleotides (ASOs) target effects in primary iTregs gene expression. Tregs were isolated from human PBMCs from 5 different donors, subjected to one of 4 different treatments: (1) Untreated, (2) Control ASO 792169, (3) FOXP3 ASO 910959, (4) FOXP3 ASO 910956 under either stimulation with aCD3/aCD28 coated beads or left unstimulated.
Project description:The study set out to assess the genome-wide distribution of the chromatin modifications H3K4me3 and H3K27me3 in mature thymic epithelial cells. ChIP and input DNA was prepared from biological replicated FACS sorted mature mTEC samples and sequenced.
Project description:The genome-wide analysis of the binding sites of the transcription factor vitamin D receptor (VDR) is essential for a global appreciation the physiological impact of the nuclear hormone 1M-NM-1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Genome-wide analysis of lipopolysaccharide (LPS)-polarized THP-1 human monocytic leukemia cells via chromatin immunoprecipitation (ChIP) coupled with massive parallel sequencing (ChIP-seq) resulted in 1,318 high-confidence VDR binding sites, of which 789 and 364 occurred uniquely with and without 1,25(OH)2D3 stimulation, while only 165 were common. We re-analyzed five public VDR ChIP-seq datasets with identical peak calling settings (MACS, version 2) and found in total 23,409 non-overlapping VDR binding sites, 75% of which are unique within the six analyzed cellular models. LPS-differentiated THP-1 cells have 22% more genomic VDR locations than undifferentiated cells and both cell types display more overlap in their VDR locations than the other investigated cell types. In general, the intersection of VDR binding profiles of ligand-stimulated cells is higher than those of unstimulated cells. De novo binding site searches and DR3-type binding site screening using HOMER of the six VDR ChIP-seq datasets suggest that DR3 sites are strongly associated with the ligand-responsiveness of VDR occupation. Importantly, all VDR ChIP-seq datasets display the same relationship between the VDR occupancy and the percentage of DR3-type sequences below the peak summits. The comparative analysis of six VDR ChIP-seq datasets demonstrated that the mechanistic basis for the action of the VDR is independent of the cell type. Only the minority of genome-wide VDR binding sites contains a DR3-type sequence. Moreover, the total number of identified VDR binding sites in each ligand-stimulated cell line inversely correlates with the percentage of peak summits with DR3 sites. Systematic reanalysis of 5 published VDR ChIP-seq datasets together with a new dataset from 24 h LPS-treated THP-1 cells at the unstimulated state and after 80 min ligand (10 nM 1M-NM-1,25(OH)2D3 (1,25D, calcitriol)) treatment. See GSM1280896 and GSM1280896 Sample records for data processing information. GSE53041_README.txt has additional details.