ABSTRACT: Salicylic acid (SA) and jasmonic acid (JA) fulfill key signaling functions in plant responses to herbivores. However, the mechanisms that facilitate systemic signaling in response to phloem-feeding insects remain poorly defined. Rapid local and systemic transcriptome reprogramming patterns observed in Arabidopsis thaliana following infestation by the green peach aphid (Myzus persicae Sulzer) identify abscisic acid (ABA) and redox-signalling as key factors in the transmission of signals from local to systemic leaves. Moreover, aphid fecundity was increased in mutants that were defective in ABA-signaling through ABA-INSENSITIVE 4 and show constitutive up-regulation of SA- and JA-mediated defense pathways. Conversely, aphid fecundity was decreased and aphid vigor was impaired on vitamin C2 mutants that are defective in the major low molecular weight antioxidant of plant cells, ascorbic acid and show constitutive up-regulation of redox defense and SA-mediated pathways but reduced up-regulation of JA-mediated pathways. Crossing vtc2 with abi4 restored the wild type sensitivity to aphids. Hence aphid fecundity was attenuated by low ascorbate in a manner that was dependent on the functions of the ABI4 transcription factor. ABI4 is not only an important regulator of systemic defenses against aphids but it makes a significant contribution to the SA-mediated repression of JA signaling.
Project description:Salicylic acid (SA) and jasmonic acid (JA) fulfill key signaling functions in plant responses to herbivores. However, the mechanisms that facilitate systemic signaling in response to phloem-feeding insects remain poorly defined. Rapid local and systemic transcriptome reprogramming patterns observed in Arabidopsis thaliana following infestation by the green peach aphid (Myzus persicae Sulzer) identify abscisic acid (ABA) and redox-signalling as key factors in the transmission of signals from local to systemic leaves. Moreover, aphid fecundity was increased in mutants that were defective in ABA-signaling through ABA-INSENSITIVE 4 and show constitutive up-regulation of SA- and JA-mediated defense pathways. Conversely, aphid fecundity was decreased and aphid vigor was impaired on vitamin C2 mutants that are defective in the major low molecular weight antioxidant of plant cells, ascorbic acid and show constitutive up-regulation of redox defense and SA-mediated pathways but reduced up-regulation of JA-mediated pathways. Crossing vtc2 with abi4 restored the wild type sensitivity to aphids. Hence aphid fecundity was attenuated by low ascorbate in a manner that was dependent on the functions of the ABI4 transcription factor. ABI4 is not only an important regulator of systemic defenses against aphids but it makes a significant contribution to the SA-mediated repression of JA signaling.
Project description:In most aphid species, facultative parthenogenetic reproduction allows rapid growth and formation of large single-genotype colonies. Upon predator attack, individual aphids emit an alarm pheromone to warn the colony of this danger. (E)-beta-farnesene (EBF) is the predominant constituent of the alarm pheromone in Myzus persicae (green peach aphid) and many other aphid species. Continuous exposure to alarm pheromone in aphid colonies raised on transgenic Arabidopsis thaliana plants that produce EBF leads to habituation of the aphid population. Whereas naïve aphids are repelled by EBF, habituated aphids show no avoidance response. Individual aphids from the habituated colony can revert back to being EBF-sensitive in three generations, indicating that this behavioral change is not caused by a genetic mutation. Instead, DNA microarray experiments comparing gene expression in naïve and habituated aphids treated with EBF demonstrate an almost complete desensitization in the transcriptional response to EBF. Furthermore, EBF-responsive aphids, but not habituated aphids show significantly lower reproduction in the presence of EBF. Although both naïve and habituated aphids emit EBF upon damage, EBF-responsive aphids display a higher survival rate in the presence of coccinellid predators and thus outperform habituated aphids that do not show an avoidance response. These results provide direct evidence that aphid perception of conspecific alarm pheromone aids in predator avoidance and thereby bestows fitness benefits in survivorship and fecundity. Although habituated M. persicae have equal fecundity on control and EBF-producing plants, such transgenics may have practical applications in agriculture because of increased predation of habituated aphids. Log fold-changes (LogFC) were computed and contigs with P-values ≤ 0.05 were considered to be differentially expressed (see Supplementary file at foot of this record). Agilent 8x15K array previously reported by Ramsey et al., 2007 - BMC Genomics 8: 243. Two-condition experiment using Alexa Fluor 555 and 647 dyes. Biological replicates: 4 control replicates, 4 treated replicates.
Project description:The bird cherry-oat aphid (Rhopalosiphum padi L.) (Homoptera: Aphididae) is an important pest on cereals causing plant growth reduction but no specific leaf symptoms. Breeding of barley (Hordeum vulgare L.) for R. padi resistance shows that there are several resistance genes involved, reducing aphid growth. In an attempt to identify candidate sequences for resistance-related genes, we performed a microarray analysis of gene expression after two days of aphid infestation in two susceptible barley lines and two genotypes with partial resistance. One of the four lines is a descendant of two of the other genotypes. The analysis revealed large differences in gene induction between the four lines, indicating substantial variation in response even between closely related genotypes. Genes induced in the aphid-infested tissue were mainly related to defence, primary metabolism and signalling. Only twenty-four genes were induced in all lines, none of them related to oxidative stress or secondary metabolism. Few genes were down-regulated and none of those was common to all four lines. There were differences in aphid-induced gene regulation between resistant and susceptible lines, and results from control plants without aphids also revealed differences in constitutive gene expression between the two types of lines. Candidate sequences for both induced and constitutive resistance factors have been identified, among them a proteinase inhibitor, a Ser/Thr kinase and several thionins. Experiment Overall Design: Four barley genotypes, two (Lina, Kara) with susceptibility to the bird cherry-oat aphid (Rhopalosiphum padi) and two (Hsp5, 28:4) with partial resistance, were infested with R. padi. After 48 h of aphid feeding, changes in transcript accumulation were analysed by comparing aphid-infested plants with control (uninfested) plants for each genotype. For each treatment, 3 biological replicates were analysed. Overlaps and differences in regulation of RNA abundance were identified between the four genotypes. 28:4 is a descendant of Hsp5 and Lina.
Project description:Aphids are phloem-feeding insects that cause yield loss on a wide range of crops, including cereals such as barley. While most aphid species are limited to one or few host species, some are able to reproduce on many plants belonging to different families. Interestingly, aphid probing-behaviour can be observed on both host and non-host species indicating that interactions take place at the molecular level that may impact host range. Here, we aimed to gain insight into the interaction of barley with aphid species differing in their ability to infest this crop by analysing transcriptional responses. First, we determined colonization efficiency, settlement, and probing behaviour for the aphid species Rhopalosiphum padi, Myzus persicae and Myzus cerasi, which defined host, poor-host and non-host interactions, respectively. Analyses of barley transcriptional responses revealed gene sets differentially regulated upon the different barley-aphid interactions and showed that the poor-host interaction with M. persicae resulted in the strongest deregulation of genes. Interestingly, we identified several thionin genes strongly up-regulated upon interaction with M. persicae, and to a lesser extend upon R. padi interaction. Ectopic expression of two of these genes in Nicotiana benthamiana reduced host susceptibility to M. persicae, indicating thionins contribute to defences against aphids.
Project description:Aphids, sap-sucking insects in the order Hemiptera, are among the most prolific insect vectors of plant viruses Plant viruses from the family Luteoviridae are transmitted exclusively by aphids in a circulative manner and cause significant crop yield losses. Circulative plant viruses must cross the aphid gut and other tissues prior to transmission to a new host plant. The discovery of proteins that control acquisition and transmission in the insect vector is the biggest challenge for the vector biology field and will have practical applications for growers by providing new molecular targets for the development of precision vector management tools. The green peach aphid, Myzus persicae, is a vector of the Potato leafroll virus (PLRV), a polerovirus in the Luteoviridae. PLRV transmission efficiency was significantly reduced when a clonal lineage of M. persicae was reared on turnip (T-Myzus) as compared to the weed physalis (P-Myzus). The effect on PLRV transmission efficiency was transient and caused by a host-switch response. Using 2-D DIGE, we revealed that the major difference in the proteome profile of P- and T-Myzus was the lysosomal cysteine protease cathepsin B, with multiple size and charge isoforms of this enzyme up-regulated in T-Myzus. Quantitative, shotgun proteomics revealed a specific upregulation in the expression of other lysosomal proteins in T-Myzus as compared to P-Myzus, including cathepsin B, cathepsin B-16, beta-glucuronidase, peroxidasin, legumain-like, and aminopeptidase-N. The titer of PLRV was over 1.5 fold higher in P-Myzus than in T-Myzus at 24h and 72h after the beginning of virus acquisition, suggesting that virus acquisition in P-Myzus was more efficient. Cathepsin B and PLRV localization were starkly different in P- and T-Myzus midguts, the site of PLRV acquisition into the insect. In P-Myzus midguts, an abundance of PLRV was observed inside midgut cells, and cathepsin B was sequestered in a subcellular compartment. In contrast, there is near complete co-localization of cathepsin B and PLRV at the cell membranes in viruliferous T-Myzus. Inhibition of cathepsin and other cysteine proteases with E64 restored the ability of T-Myzus to transmit PLRV in a dose-dependent manner, suggesting that the activities of lysosomal cysteine proteases at the cell membrane in T-Myzus is responsible for the change in virus transmission phenotype in these aphids. T-Myzus individuals weighed more and had more progeny than P-Myzus individuals. These data are all consistent with the hypothesis that there is an induction of lysosomal exocytos in the midgut of T-Myzus linked to the ability of the aphid to acquire PLRV. These data also show that the ability of the generalist aphid M. persicae to transmit PLRV is influenced by the host plant the aphids are reared on, information that is useful to growers for polerovirus management in field crops.
Project description:Myzus persicae (green peach aphid) feeding on Arabidopsis thaliana induces a defense response, quantified as reduced aphid progeny production, in infested leaves but not in other parts of the plant. Similarly, infiltration of aphid saliva into Arabidopsis leaves causes only a local increase in aphid resistance. Further characterization of the defense-eliciting salivary components indicates that Arabidopsis recognizes a proteinaceous elicitor with a size between 3 to 10 kD. Genetic analysis using well-characterized Arabidopsis mutant shows that saliva-induced resistance against M. persicae is independent of the known defense signaling pathways involving salicylic acid, jasmonate, and ethylene. Among 78 Arabidopsis genes that were induced by aphid saliva infiltration, 52 had been identified previously as aphid-induced, but few are responsive to the well-known plant defense signaling molecules salicylic acid and jasmonate. Quantitative PCR analysis confirms expression of saliva-induced genes. In particular, expression of a set of O-methyltransferases, which may be involved in the synthesis of aphid-repellent glucosinolates, was significantly up-regulated by both M. persicae feeding and treatment with aphid saliva. However, this did not correlate with increased production of 4-methoxyindol-3-ylmethylglucosinolate, suggesting that aphid salivary components trigger an Arabidopsis defense response that is independent of this aphid-deterrent glucosinolate. Experiment Overall Design: 3 biological replicates (control and treatment). Total number of samples: 6.
Project description:Soybean aphids are phloem-feeding pests that can cause significant yield losses in soybean plants. Soybean aphids thrive on susceptible soybean lines but not on resistant lines. We used microarrays to characterize the soybean plant's transcriptional defense against aphids in two related cultivars, a susceptible line and a resistant line with the Rag1 aphid-resistance gene. We measured trancript levels in leaves after one and seven days of aphid infestation. This was a full-factorial experiment with three factors: soybean variety (susceptible SD01-76R,resistant LD05-16060), aphid treatment (control, aphids), and infestation duration (1 day, 7 days). There were three replicates per treatment, for a total of 24 samples. The experiment was carried out in a growth chamber. At the V3 growth stage, thirty aphids were added to the third trifoliate leaves of the aphid-treated plants. Each plant had a net to prevent aphid movement among different plants. The aphids were removed prior to sampling.
Project description:Plant defenses against pathogens and insects are regulated differentially by cross-communicating signaling pathways in which salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) play key roles. To understand how plants integrate pathogen- and insect-induced signals into specific defense responses, we monitored the dynamics of SA, JA, and ET signaling in Arabidopsis after attack by a set of microbial pathogens and herbivorous insects with different modes of attack. Arabidopsis plants were exposed to a pathogenic leaf bacterium (Pseudomonas syringae pv. tomato), a pathogenic leaf fungus (Alternaria brassicicola), tissue-chewing caterpillars (Pieris rapae), cell-content-feeding thrips (Frankliniella occidentalis), or phloem-feeding aphids (Myzus persicae). Monitoring the signal signature in each plant-attacker combination showed that the kinetics of SA, JA, and ET production varies greatly in both quantity and timing. Analysis of global gene expression profiles demonstrated that the signal signature characteristic of each Arabidopsis-attacker combination is orchestrated into a surprisingly complex set of transcriptional alterations in which, in all cases, stress-related genes are overrepresented. Comparison of the transcript profiles revealed that consistent changes induced by pathogens and insects with very different modes of attack can show considerable overlap. Of all consistent changes induced by A. brassicicola, P. rapae, and F. occidentalis, more than 50% were also induced consistently by P. syringae. Notably, although these four attackers all stimulated JA biosynthesis, the majority of the changes in JA-responsive gene expression were attacker-specific. All together our study shows that SA, JA, and ET play a primary role in the orchestration of the plant's defense response, but other regulatory mechanisms, such as pathway cross-talk or additional attacker-induced signals, eventually shape the highly complex attacker-specific defense response. In the experimental set up we intended to select for genes that showed a more than 2-fold change in the same direction(up or down)at two time points after pathogen or insect attack. The results are described in the following paper:; De Vos, M., Van Oosten, V.R., Van Poecke, R.M.P., Van Pelt, J.A., Pozo, M.J., Mueller, M.J., Buchala, A.J., Metraux, J.-P., Van Loon, L.C., Dicke, M. and Pieterse, C.M.J. (2005). Signal signature and transcriptome changes in Arabidopsis upon pathogen and insect attack. Molecular Plant-Microbe Interactions. Experimenter name = Corne Pieterse; Experimenter phone = +31 30 253 3013; Experimenter fax = +31 30 251 8366; Experimenter department = Section Phytopathology; Experimenter institute = Utrecht University; Experimenter address = Department of Biology; Experimenter address = Utrecht University; Experimenter address = Sorbonnelaan 16; Experimenter address = Utrecht; Experimenter zip/postal_code = 3584CA; Experimenter country = The Netherlands Experiment Overall Design: 14 samples were used in this experiment
Project description:Neonicotinoid insecticides control crop pests based on their action as agonists at the insect nicotinic acetylcholine receptor which accepts chloropyridinyl- and chlorothiazolyl- analogs almost equally well. In some cases, these compounds have also been reported to enhance plant vigor and (a)biotic stress tolerance, independent of their insecticidal function. However, this mode of action has not been specifically defined. Using Arabidopsis thaliana, we show that the neonicotinoid compounds, imidacloprid (IMI) and clothianidin (CLO), via their 6-chloropyridinyl-3-carboxylic acid and 2-chlorothiazolyl-5-carboxylic acid metabolites, respectively, induce salicylic acid (SA) – associated plant responses. SA is a phytohormone best known for its role in plant defense against pathogens and as an inducer of systemic acquired resistance; however, it can also modulate abiotic stress responses. These neonicotinoids effect a similar global transcriptional response to that of SA including genes involved in (a)biotic stress response. Furthermore, similar to SA, IMI and CLO induce systemic acquired resistance resulting in reduced growth of a powdery mildew pathogen. The action of CLO induces the endogenous synthesis of SA via the SA biosynthetic enzyme ICS1, with ICS1 required for CLO-induced accumulation of SA, expression of the SA marker PR1, and fully enhanced resistance to powdery mildew. In contrast, the action of IMI does not induce endogenous synthesis of SA. Instead, IMI is further bioactivated to 6-chloro-2-hydroxypyridinyl-3-carboxylic acid, which is shown here to be a potent inducer of PR1 and inhibitor of SA-sensitive enzymes. Thus, via different mechanisms, these chloropyridinyl- and chlorothiazolyl- neonicotinoids induce SA responses associated with enhanced stress tolerance. response to neonicotinoid insecticides
Project description:The aim of this study is to identify Arabidopsis genes whose expression is altered by aphid feeding. An understanding of the plant aphid interaction at the level of the plant transcriptome will 1) consolidate current areas of investigation focused on the phloem composition (the aphid diet), 2) open up areas of plant aphid interactions for ourselves and other workers, 3) Contribute to understanding the use of new molecular technologies in an environmental context and 4) contribute to existing and development of novel control strategies.Our Arabidopsis/Myzus persicae system provides a valuable model for the study because of: a) the advantages of using Arabidopsis, b) The ability to use clonal insects, c) phloem feeding aphids facilitate focus on a specific cell type, d) aphid stylectomy allows collection of pure phloem sap to monitor ?phloem phenotype?? of the plant and the insect diet, e) we have techniques to monitor the reproductive performance and feeding behaviour aphids.Our strategy has been to test the function of selected genes, particularly those regulating phloem composition (the feeding site of the aphid) based on current phloem models of phloem function. Gene choice is limited the simplicity of current models of phloem aphid interaction.We propose a simple two treatment (aphid infested vs control plants) experiment that will identify novel target genes for future analysis. Arabidopsis plants (variety Columbia) will be grown in 16/8 light/dark in temperature controlled growth rooms. At growth stage 3.90, when rosette growth is complete, 10 clonal adult Myzus persicae will be caged in clip cages on the two largest leaves on each plant. Control plants will be treated identically except that the cages will be empty. Leaves will be harvested 8 h after infestation. This time point is selected as we know that 90% of aphids are plugged into the sieve element within 2h and that a 6h lag phase has period has previously been used when examining gene expression affected by wounding. In subsequent experiments we will examine time courses of expression of relevant genes using other approaches. Pooling two leaves from each of ten plants will generate the RNA sample, ensuring that expression signals are representative of the population of plants. Experiment Overall Design: Number of plants pooled:10