RNA-seq of diploid and triploid parthenogenetic human embryonic stem cells
Ontology highlight
ABSTRACT: A comparison between diploid and triploid human embryonic stem cells. Characterization of triploid human embryonic stem cells and investigation of triploidy's effects on human development.
Project description:The systematic deep sequencing analysis provided a comprehensive understanding of the transcriptome complexity of 2n and 3n Fujian oyster. This information broadens our understanding of the mechanisms of C.angulata polyploidization and contributes to molecular and genetic research by enriching the oyster database. This is the first report on genome-wide transcriptional analysis of adductor muscle of diploid and triploid Fujian oyster and has demonstrated triploid oysters are morphologically almost identical to their diploid counterparts, but have faster growth, due to the reorientation of energetic allocation from gametogenesis to somatic investment. This study provides a foundation for further analysis of the gene expression patterns and signaling pathways which regulate the molecular mechanisms of diploid and triploid oyster.
Project description:To avoid negative environmental impacts of escapees and potential inter-breeding with wild populations, the Atlantic salmon farming industry has and continues to extensively test triploid fish that are sterile. However, they often show differences in performance, physiology, behavior and morphology compared to diploid fish, with increased prevalence of vertebral deformities and ocular cataracts as two of the most severe disorders. Here, we investigated the mechanisms behind the higher prevalence of cataracts in triploid salmon, by comparing the transcriptional patterns in lenses of diploid and triploid Atlantic salmon, with and without cataracts. We assembled and characterized the Atlantic salmon lens transcriptome and used RNA-seq to search for the molecular basis for cataract development in triploid fish. Transcriptional screening showed only modest differences in lens mRNA levels in diploid and triploid fish, with few uniquely expressed genes. In total, there were 165 differentially expressed genes (DEGs) between the cataractous diploid and triploid lens. Of these, most were expressed at lower levels in triploid fish. Differential expression was observed for genes encoding proteins with known function in the retina (phototransduction) and proteins associated with repair and compensation mechanisms. The results suggest a higher susceptibility to oxidative stress in triploid lenses, and that mechanisms connected to the ability to handle damaged proteins are differentially affected in cataractous lenses from diploid and triploid salmon.
Project description:The systematic deep sequencing analysis provided a comprehensive understanding of the transcriptome complexity of 2n and 3n Fujian oyster. This information broadens our understanding of the mechanisms of C.angulata polyploidization and contributes to molecular and genetic research by enriching the oyster database. This is the first report on genome-wide transcriptional analysis of adductor muscle of diploid and triploid Fujian oyster and has demonstrated triploid oysters are morphologically almost identical to their diploid counterparts, but have faster growth, due to the reorientation of energetic allocation from gametogenesis to somatic investment. This study provides a foundation for further analysis of the gene expression patterns and signaling pathways which regulate the molecular mechanisms of diploid and triploid oyster. Examination of 3 different samples, including diploid (DF and DM) and triplod(T) oyster.
Project description:To test the differences in genome-wide DNA methylation signatures of haploid, diploid and triploid hESCs, we extracted genomic DNA from these cells and performed RRBS.
Project description:To examain effects of triploidy on gene expression in mouse cells, we have employed whole genome microarray expression profiling. To study the effects of aneuploidy in mouse cells, we isorated diploid, triploid and tetraploid cells from p53-/- mouse embryonic cells Gene expression in diploid cells (RRI2, 15 and 2-1), triploid cells (RRI2-5, 2-12 and 2-15) and tetraploid cells (RRI2-2, 2-4 and 2-6).
Project description:To examain effects of triploidy on gene expression in mouse cells, we have employed whole genome microarray expression profiling. To study the effects of aneuploidy in mouse cells, we isorated diploid, triploid and tetraploid cells from p53-/- mouse embryonic cells
Project description:Dosage compensation restores a balanced network of gene expression between autosomes and sex chromosomes in males (XY) and females (XX). In mammals, this is achieved by doubling the expression of X-linked genes in both sexes, together with X inactivation in females. X up-regulation may be controlled by DNA sequence based and/or epigenetic mechanisms that double the X output potentially in response to an autosomal counting factor. Human triploids with either one or two active X chromosomes (Xa) provide a mean to test X chromosome expression in the presence of three sets of autosomes, which will help understand the underlying mechanisms of X up-regulation. We measured whole genome gene expression in human triploid cell cultures with either one or two active X. We found that overall X-linked gene expression is not tripled in the presence of three sets of autosomes. However, in triploid cells with a single active X chromosome, its expression is adjusted upward, presumably by an epigenetic mechanism that senses the active X-autosome ratio. Six human XXX triploid fibroblast clones with either one or two active X, three XYY triploid fibroblast cultures, and two male (XY) and two female (XaXi) control diploid fibroblast cultures were selected for RNA extraction and hybridization on Affymetrix whole genome expression arrays (HG-U133 2.0 plus chip). Probe labeling, array hybridization and scanning were done by the University of Washington Microarray Center.
Project description:To ensure sustainability of aquaculture, plant-based ingredients are being used in feeds to replace marine-derived products. However, plants contain secondary metabolites which can affect food intake and nutrient utilisation of fish. The application of nutritional stimuli during early development can induce long-term changes in animal physiology. Recently, we successfully used this approach to improve the utilisation of plant-based diets in diploid and triploid Atlantic salmon. In the present study we explored the molecular mechanisms occurring in the liver of salmon when challenged with a plant-based diet in order to determine the metabolic processes affected, and the effect of ploidy. Microarray analysis revealed that nutritional history had a major impact on the expression of genes. Key pathways of intermediary metabolism were up-regulated, including oxidative phosphorylation, pyruvate metabolism, TCA cycle, glycolysis and fatty acid metabolism. Other differentially expressed pathways affected by diet included protein processing in endoplasmic reticulum, RNA transport, endocytosis and purine metabolism. The interaction between diet and ploidy also had an effect on the hepatic transcriptome of salmon. The biological pathways with the highest number of genes affected by this interaction were related to gene transcription and translation, and cell processes such as proliferation, differentiation, communication and membrane trafficking. The present study revealed that nutritional programming induced changes in a large number of metabolic processes in Atlantic salmon, which may be associated with the improved fish performance and nutrient utilisation demonstrated previously. In addition, differences between diploid and triploid salmon were found, supporting recent data that indicate nutritional requirements of triploid salmon may differ from those of their diploid counterparts.
Project description:Current commercially available feeds for salmon are predominantly made of plant ingredients, with consequent changes to the composition and contents of a range of nutrients and other components in the diet. There are concerns that, with these major changes in raw materials, new feeds will affect not only the composition and contents of nutrients, but also the bioavailability and, combined with the limited knowledge of micronutrient requirements for Atlantic salmon, this might impact growth performance and health of the fish. The present study investigated the effects of graded levels of a micronutrient package supplemented to feeds formulated with low levels of marine ingredients and fed to diploid and triploid Atlantic salmon throughout the freshwater phase. Specifically, fish were fed three diets containing low levels of FM and FO and identical in formulation other than being supplemented with 3 levels (L1, 100 %; L2, 200 % and L3, 400 %) of a micronutrient mix formulated as a modification of current nutrient levels reported for salmon. Duplicate groups of diploid and triploid parr were fed the experimental diets from around 30 g to seawater transfer and the effects on growth performance, feed efficiency, biochemical composition, liver histology, hepatic gene expression (transcriptome) and smoltification efficiency determined. Microarray analysis revealed that the hepatic transcriptome profile of diploid fish fed diet L2 was more similar to that observed in triploids fed diet L3 than to those fed L2, suggesting that micronutrient requirements of triploid salmon may differ from levels accepted in diploid salmon. Different levels of micronutrient supplementation affected the expression of key genes involved in lipid metabolism. In particular sterol biosynthesis pathways (steroid and terpenoid backbone synthesis) were down-regulated in both L2-fed diploids and L3-fed triploids when compared with diet L1-fed diploids and triploids, respectively. Gene sets analysis showed an up-regulation of genes involved in immune processes in triploid salmon fed diet L3. Another biological category affected by diet in triploid salmon was genetic information processing. In fish fed diet L3 down-regulation of RNA degradation, proteasome, RNA polymerase, spliceosome and ribosome was observed, suggesting a decrease in protein turnover in this group, which may indicate a decrease in energy expenditure. In addition, one-carbon metabolism was affected by diet in diploid and triploid salmon.