Tissue architecture influences brain organoid identity and developmental trajectory
Ontology highlight
ABSTRACT: This project used snRNA-seq and Molecular Cartography (single cell spatial transcriptomics) to investigate the relation between morphology and molecular identity in human brain organoids.
Project description:This study used snATAC-seq to profile Chromatin accessibility in 26 day-old iPSC-derived kidney organoids, treated with TGFB1, the EzH2 inhibitor GSK343, a combination of both or a vehicle control for 48 hours (days 24-26) before harvesting. 2 organoids per condition were pooled and dissociated using a cold-active protease. Nuclei were extracted and profiled using the 10X Genomics Single-cell ATAC reagent kit v1.1. Libraries were sequenced using paired-end reads on an Illumina NovaSeq 6000. Initial processing was performed using CellRanger ATAC v1.2.0 (10X Genomics).
Project description:To study how methanol fixation affects single-cell transcriptomic measurement, two cerebral organoids were dissociated. Cell suspension of each organoid was split into two aliquots. Methanol fixation was applied to one of the two aliquots. Single-cell RNA-seq with 10x Genomics was applied to the two aliquots separately.
Project description:Human induced pluripotent stem cell-derived kidney organoids have potential for disease modelling and regenerative medicine purposes. However, they lack a functional vasculature and remain immature in in vitro culture. Here, we transplanted kidney organoids at day 7+12 of differentiation in the coelomic cavity of chicken embryos and then compared them to their respective untransplanted controls at d7+13 and d7+20 using scRNAseq and imaging modalities. We demonstrate vascularization and enhanced maturation of transplanted kidney organoids.
Project description:This study used scRNA-seq to characterise the transcriptome in 26 day-old iPSC-derived kidney organoids, treated with TGFB1, the EzH2 inhibitor GSK343, a combination of both or a vehicle control for 48 hours (days 24-26) before harvesting. 2 organoids per condition were pooled and dissociated using a cold-active protease. Nuclei were extracted and profiled using the 10X Genomics Single-cell 3' V3 kits. Libraries were sequenced using paired-end reads on an Illumina NextSeq 500. Initial processing was performed using CellRanger v3.1.0 (10X Genomics).
Project description:This study aims to compare in vivo human trophoblast differentiation into EVTs to different in vitro trophoblast organoids using single-cell and single-nuclei RNA sequencing. The study includes two type of systems: human primary trophoblast organoids (PTO) and trophoblast stem cells (TSCs). Trophoblast stem cell (TSC) lines BTS5 and BTS11 derived by Okae and colleagues were grown as described previously (Okae et al. 2018) and together with EVT media. Primary trophoblast organoids (PTO) were grown and differentiated into EVT as previously described by Turco & Sheridan (Turco et al 2018; Sheridan et al 2020). This study shows that the main regulatory programs mediating EVT invasion in vivo are preserved in in vitro models of EVT differentiation from primary trophoblast organoids and trophoblast stem cells.
Project description:To investigate the heterogeneity during the neuroepithelial stage of organoid development, we performed a multiome experiment on day 15-18 old brain organoids
Project description:scRNA-seq was used to characterise hiPSC-derived kidney organoids differentiated within fully synthetic self-assembling peptide hydrogels of variable mechanical strengths and compare these to organoids differentiated within the animal-derived matrix, Matrigel. Organoids were matured in the respective matrices until day 24 of differentiation and 6 organoids per support matrix were then pooled and dissociated using the cold-active protease from Bacillus licheniformis. Cells were processed on the 10x Genomics Chromium platform using the Single-Cell 3’ v3.1 protocol. The NextSeq500 (Illumina) was used to sequence the libraries generated and initial processing of the data was carried out using the 10X Genomic Cell Ranger v3.1.0 pipeline.
Project description:Single-nucleus RNA-seq-2 method that allows deep characterization of nuclei isolated from frozen archived tissues. We have used this approach to characterize the transcriptional profile of individual hepatocytes with different levels of ploidy. This method has the potential to explore archived samples, for instance to study the development and progression of disease in complex tissues. To illustrate the potential of this method, we have deeply characterized the cellular heterogeneity driven by spatial distribution and different levels of ploidy in the young adult mouse liver.
Project description:The human brain has changed dramatically from other primate species, but the genetic and developmental mechanisms behind the differences remains unclear. Here we used single cell RNA sequencing based on 10X technology to explore temporal transcriptomic dynamics and cellular heterogeneity in cerebral organoids derived from human and non-human primates chimpanzee and rhesus macaque stem cells. Using cerebral organoids as a proxy of early brain development, we detect a delayed pace of human brain development relative to the other two primate species. Additional human-specific gene expression patterns resolved to different cell states through progenitors to neurons are also found. Our data provide a transcriptomic cell atlas of primate early brain development, and illustrate features that are unique to humans.