Mosaic perturbation of transcription factors in human retinal organoid development
Ontology highlight
ABSTRACT: To begin to understand how TFs regulate retinal cell type identity in human tissues, we established a pooled loss of function (LOF) experiment based on the CROP-seq protocol in developed retinal organoids. We targeted five TFs (OTX2, NRL, CRX, VSX2, and PAX6) that are important for retinal development and expressed dynamically over the organoid developmental time course.
Project description:In order to provide multi-omic resolution to human retinal organoid developmental dynamics, we performed scRNA-seq and scATAC-seq from the same cell suspension across a time course (6-46 weeks) of human retinal organoid development. This data set covers all the retinal organoid scRNA-seq data generated from IMR90 and409B2-iCas9 cell lines.
Project description:In order to provide multi-omic resolution to human retinal organoid developmental dynamics, we performed scRNA-seq and scATAC-seq from the same cell suspension across a time course (6-46 weeks) of human retinal organoid development. This data set covers all the retinal organoid scATAC-seq data generated from IMR90 and 409B2-iCas9 cell lines.
Project description:Induced pluripotent stem cell (iPSC) derived organoid systems provide models to study human organ development. Single-cell transcriptome sequencing enables highly-resolved descriptions of cell state heterogeneity within these systems and computational methods can reconstruct developmental trajectories. However, new approaches are needed to directly measure lineage relationships in these systems. Here we establish an inducible dual channel lineage recorder, iTracer, that couples reporter barcodes, inducible CRISPR/Cas9 scarring, and single-cell transcriptomics to analyze state and lineage relationships in iPSC-derived systems. This data set include the iTracer data of 12 cerebral organoids.
Project description:Induced pluripotent stem cell (iPSC) derived organoid systems provide models to study human organ development. Single-cell transcriptome sequencing enables highly-resolved descriptions of cell state heterogeneity within these systems and computational methods can reconstruct developmental trajectories. However, new approaches are needed to directly measure lineage relationships in these systems. Here we establish an inducible dual channel lineage recorder, iTracer, that couples reporter barcodes, inducible CRISPR/Cas9 scarring, and single-cell transcriptomics to analyze state and lineage relationships in iPSC-derived systems. This data set include the iTracer-perturb data of one cerebral organoid with simultaneous TSC2 perturbation and lineage recording.
Project description:To investigate the heterogeneity during the neuroepithelial stage of organoid development, we performed a multiome experiment on day 15-18 old brain organoids
Project description:Induced pluripotent stem cell (iPSC) derived organoid systems provide models to study human organ development. Single-cell transcriptome sequencing enables highly-resolved descriptions of cell state heterogeneity within these systems and computational methods can reconstruct developmental trajectories. However, new approaches are needed to directly measure lineage relationships in these systems. Here we establish an inducible dual channel lineage recorder, iTracer, that couples reporter barcodes, inducible CRISPR/Cas9 scarring, and single-cell transcriptomics to analyze state and lineage relationships in iPSC-derived systems. This data set include the iTracer data of two microdissected regions of one cerebral organoid.
Project description:Müller glia play very important and diverse roles in retinal homeostasis and disease, bur very little is known of their development during human retinal embryogenesis. Since they share several markers with retinal progenitors, they are often considered as a different cell population. In this study we isolated CD29+/CD44+cells from retinal organoids formed by hEPSC cells in vitro, and examined their transcriptome profile at various stages of organoid development to identify their transcriptomic profile.
Project description:To investigate the influence of transcription factor knockouts in cell fate decision-making, we performed a CROP-seq screen of 20 transcription factors in brain organoids.
Project description:hESC lines carrying deleterious mutations in the RB1 gene in heterozygous and homozygous state were generated by genome-editing based on CRISPR/Cas9. Parental cell line and genome-edited cell lines were differentiated into retinal organoids for 152 days based on the Protocol published by Döpper et al., Current protocols, PMID: 32956559. Briefly, single cells were reaggregated in presence of dual SMAD and WNT-inhibition; retinal tissue became visible from day 12 onward. BMP4-induction and addition of small molecules CHIR99021 and SU5402 directed differentiation towards retina and retinal pigment epithelium. Long-term differentiation was carried out in the presence of 10% FBS, taurine and retinoic acids. Organoids were collected at indicated time points and either embedded for cryosectioning and immunostaining or frozen at -80°C for RNA preparation.