Transcriptome analysis of Heterodera avenae two developmental stages
Ontology highlight
ABSTRACT: The cereal cyst nematode (CCN, Heterodera avenae) is a major pest of wheat (Triticum spp) that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two parasitic stages of H. avenae.
Project description:Parallel genome-wide expression profile of soybean and soybean cyst nematode at three points during infection 2, 5, 10 days post-inoculation.
Project description:Plant-parasitic nematodes (PPN) need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest (including desiccation, cryopreservation, hatching inhibition and dauer stages) are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN) (Globodera pallida and G. rostochiensis) are frequently in a dessicated state unhatched nematodes within the egg dispersal unit inside the cyst. Long term survival seems to be associated primarily with species that have a very restricted host range which requires surviving unhatched in the absence of the host for extended periods of time. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G.pallida to hydration and following exposure to tomato root diffusate using microarray gene expression analysis from a broad set of genes. Surprisingly, many unique genes were activated in the population of diapaused eggs. Transport activity was activated in both quiescent and diapaused eggs; however, the transport function genes were very different between them. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long term survival.
Project description:Comparison of syncytia gene expression between soybean near-isogenic lines 7923R (NIL-R) and 7923S (NIL-S) infected with the soybean cyst nematode (PA3).
Project description:The cultivar Desirée and the breeding line SW93-1015 were challenged with potato cyst nematodes and transcriptomes analysed after 8h and 48 h.
Project description:This experiment analyzes the changes in expression of twelve days old Arabidopsis roots after 10 hours of beet cyst nematode Heterodera schachtii treatment
Project description:Background; Heterodera schachtii is an economically important plant parasitic nematode that forms a syncytium from a cell superficial to the formed vascular bundle by progressive recruitment of other cells into the structure. The pattern of plant gene expression changes dramatically inside the syncytium. The pathogen probably plays a major role in defining the plant response by choice of initial plant cell during precise behaviour in planta and/or by the secretions it releases. The modified plant cells enable a high feeding rate by the female nematode so enhancing its rate of development and subsequent daily egg production. Arabidopsis is widely used as a model plant to characterise molecular responses to nematodes (e.g. Sijmons et al., 1991 Plant J. 1:245-254.). A complete overview of the changes in plant gene expression when sedentary nematodes establish has not yet been gained using Arabidopsis or any other host plant. Experimental Approaches; Our initial studies will focus on the H. schachtii/Arabidopsis interaction. To assure reliable microarray screening care has been taken to minimise extraneous differences between samples (see "Growth conditions" section). At 21 days (Growth stage 3.2-3.5 Boyes et al., 2001 Plant Cell 13:1499-1510) Arabidopsis plants were challenged with rigorously sterilised, infective nematodes of H. schachtii as before (Urwin et al., (1997) Plant Journal 12: 455-461.). 35 sterile J2s were pipetted onto small ~0.5mm2 squares of sterile GF/A filter paper. The GF/A paper was left in direct contact with the zone of elongation on 3 lateral roots per plant for 48 hours. Control plants were mock inoculated with sterile water. Sections of root containing syncytia have been excised from the thin and transparent roots of Arabidopsis and collected into RNAlater solution (Ambion) at 21 days post infection (Growth Stage 6.1 Boyes et al. 2001). The female nematode has been removed with watch-maker's forceps. Equivalent sections of root have been harvested from non-infected plants. Material has been collected from c. 1000 plants for each of the two samples and the uninfected material serves as an internal control. Total RNA has been prepared from the reference and test root material using an RNeasy plant RNA preparation kit (Qiagen) according to methods required by GARNET.Some questions on the form are omitted as we are not using mutant or transgenic lines. This is our first application. Experimenter name = Peter Edward Urwin; Experimenter phone = 0113 343 3035/2909; Experimenter fax = 0113 343 3144; Experimenter address = Centre for Plant Science; Experimenter address = University of Leeds; Experimenter address = Leeds; Experimenter zip/postal_code = LS2 9JT; Experimenter country = UK Experiment Overall Design: 2 samples were used in this experiment
Project description:Plant-parasitic cyst nematodes induce syncytial cells in the roots of their host plants. Cyst nematodes are sexually dimorphic, with their differentiation into male or femaleis strongly influenced by host environmental conditions. Under favorable conditions with plenty of nutrients, more females develop, whereas mainly male nematodes develop under adverse conditions, such as in resistant plants. We collected root segments containing male-associated syncytia (MAS) or female-associated syncytia (FAS), isolated syncytial cells by laser microdissection, and performed a comparative transcriptome analysis using Microarrays.
Project description:The English grain aphid, Sitobion avenae, is a major agricultural pest of wheat, barley and oats, and is a major vector of Barley Yellow Dwarf Virus (BYDV) leading to reductions in grain yield. RNA-seq data from a genotype (SA3) was generated from heads and bodies, and from winged and unwinged aphids. The primary goal was to generate evidence for genome annotation, and the secondary goal was to compare expression of genes between head and body, and also between winged and unwinged aphids.
Project description:In this project we sequenced smallRNAs to see how both BCN (H.schachtii) and PCN (G. rostochiensis line 19 and 22) react to different viruses. After adapter removal, small RNA analysis was performed on sequences from 18 to 28 nt in length. Also the smallRNAs are mapped to the reference genomes of the nematodes to look for smallRNAs.