Comprehensive identification of miRNAs involved in eucalypt xylogenesis
Ontology highlight
ABSTRACT: Identification of miRNAs in the xylem of Eucalyptus globublus. Samples were taken from different seasons and at different time points from the tension and opposition wood of bent branches.
Project description:The within-tree variation in wood properties constitutes an exceptional model to study the mechanisms that adjust the different biosynthetic pathways providing substrates with the massive and variable demands of different biosynthetic reactions of cell wall polymers. Although a few genes have been reported as differentially expressed in differentiating compression wood compared to normal or opposite wood, the expression of a larger set of genes is expected to change due the broad range of features that distinguish this reaction wood. By combining the construction of different cDNA libraries with microarray analyses, using samples from different Pinus pinaster provenances collected in different years and geographic locations, we have identified a total of 496 genes that change their expression during differentiation of compression wood (331 up-regulated and 165 down-regulated compared to opposite wood). Consistent with the well-known structural and chemical characteristics of compression wood, a large number of genes involved in the biosynthesis of cell wall components were shown to be up-regulated during compression wood differentiation, including genes involved in synthesis of cellulose, hemicellulose, lignin and lignans. In particular, further analysis of a set of these genes involved in providing S-adenosylmethionine, ammonium recycling, lignin and lignans biosynthesis showed parallel expression profiles to levels of lignin accumulation in cells undergoing xylogenesis in vivo and in vitro. The comparative transcriptomic analysis of compression and opposite wood formation in this work have revealed a broad spectrum of coordinated transcriptional modulation of biosynthetic reactions for different cell wall polymers associated to within-tree variations in softwood structure and composition. In particular, it suggest the occurrence of a mechanism that modulates at transcriptional level genes encoding enzymes involved in S-adenosylmethionine synthesis and ammonium assimilation with coniferyl alcohol demand for lignin and lignan synthesis, as a key metabolic requirement in cells undergoing lignification. Two-condition experiment including dye-swap experiments, Compression Differentiating Xylem vs. Opposite Differentiating Xylem. Biological replicates: 4 compression xylem, 4 opposite xylew, harvested from four different individual pine trees. Two replicates per array.
Project description:This SuperSeries is composed of the following subset Series: GSE37678: cDNA Microarray 1: Compression Xylem vs. Opposite Xylem GSE37736: cDNA Microarray 2: Compression Xylem vs. Opposite Xylem Refer to individual Series
Project description:The within-tree variation in wood properties constitutes an exceptional model to study the mechanisms that adjust the different biosynthetic pathways providing substrates with the massive and variable demands of different biosynthetic reactions of cell wall polymers. Although a few genes have been reported as differentially expressed in differentiating compression wood compared to normal or opposite wood, the expression of a larger set of genes is expected to change due the broad range of features that distinguish this reaction wood. By combining the construction of different cDNA libraries with microarray analyses, using samples from different Pinus pinaster provenances collected in different years and geographic locations, we have identified a total of 496 genes that change their expression during differentiation of compression wood (331 up-regulated and 165 down-regulated compared to opposite wood). Consistent with the well-known structural and chemical characteristics of compression wood, a large number of genes involved in the biosynthesis of cell wall components were shown to be up-regulated during compression wood differentiation, including genes involved in synthesis of cellulose, hemicellulose, lignin and lignans. In particular, further analysis of a set of these genes involved in providing S-adenosylmethionine, ammonium recycling, lignin and lignans biosynthesis showed parallel expression profiles to levels of lignin accumulation in cells undergoing xylogenesis in vivo and in vitro. The comparative transcriptomic analysis of compression and opposite wood formation in this work have revealed a broad spectrum of coordinated transcriptional modulation of biosynthetic reactions for different cell wall polymers associated to within-tree variations in softwood structure and composition. In particular, it suggest the occurrence of a mechanism that modulates at transcriptional level genes encoding enzymes involved in S-adenosylmethionine synthesis and ammonium assimilation with coniferyl alcohol demand for lignin and lignan synthesis, as a key metabolic requirement in cells undergoing lignification. Two-condition experiment including dye-swap experiments, Compression Differentiating Xylem vs. Opposite Differentiating Xylem. Biological replicates: 4 compression xylem, 4 opposite xylew, harvested from four different individual pine trees. Two replicates per array.
Project description:Poorly differentiated thyroid carcinomas (PDTC) represent a heterogeneous, aggressive entity, presenting features that suggest a progression from well-differentiated carcinomas. To elucidate the mechanisms underlying such progression and identify novel therapeutical targets, we assessed the genome-wide expression in normal thyroid tissues, well-differentiated thyroid carcinomas and PDTC. RNA were extracted from 2 normal thyroid tissues taken from the opposite lobe of thyroid tumors, and 24 thyroid carcinomas: 5 PDTC, 7 classic papillary thyroid carcinomas (cPTC), 8 follicular variants of PTC (fvPTC) and 4 follicular thyroid carcinomas (FTC). All samples were obtained at time of surgery and immediately frozen in liquid nitrogen. We also hybridized a commercial pool of human thyroid total RNA (BD Bioscience). PTC were screened for BRAF mutations and rearrangements of RET/PTC and, in addition, follicular variants were also analyzed for RAS mutations and PAX8-PPARG rearrangements. FTC were screened for RAS and PAX8-PPARG rearrangements. PDTC were analyzed for BRAF, RAS and PAX8-PPARG genes.
Project description:ATC are among the most lethal malignancies, for which there is no effective treatment. ATC global gene expression was profiled and compared to normal thyroid tissues, in order to elucidate the molecular alterations contributing to ATC development, and to identify novel therapeutic targets. RNA were extracted from 5 ATC samples. 3 samples were obtained at time of surgery, and were immediately frozen in liquid nitrogen. The RNA from the remaining samples were collected during fine-needle aspiration biopsies, being conserved in RLT buffer (RNeasy Mini Kit, Quiagen) and maintained at -70ºC. RNA were also extracted from 3 normal thyroid samples, which were collected during surgery, taken from the opposite lobe of thyroid tumors. We also hybridized a commercial pool of human thyroid total RNA (BD Bioscience).
Project description:Wood density is a foundamental quality trait for structural timber, bioenergy and pulp industries. We investigated genes differentially transcribed in radiate pine juvneile trees with distinct wood density using cDNA microarrays. Radiata pine trees were selected from a progeny trial planted at Flynn, Australia. Based on the gravitical measurement of wood cores, 12 families with highest and lowest density each were selected, representing two groups of trees with contrasting wood density. One individual with higher or lower density were further sampled in each selected family. Developing xylem tissues of selected trees were sampled in autumn (April) when latewood (LW) was formed. The xylem tissues were scraped at breast height with a sharp chisel after the bark was removed. Wood cores of the sampled trees were further measured using SilviScan 2. Total RNA extracted from ten developing xylem tissues with confirmed distinct density in each tree group were pooled into two bulks (five trees each), and the two bulks of HD were compared with two LD bulks in the microarray experiment (named the bulk experiment). Six developing xylem tissues with the most distinct density from each tree group were further chosen. Six xylem tissues with HD were individually compared with bulked six xylem tissues with LD in the second microarray experiment (named individual experiment). These two different pooling strategies can partly minimize the genetic variation among different genotypes. Dye swaps were applied in each biological replicate.
Project description:Transcriptional changes occurring at the infection site of 2 weeks old Cabernet sauvignon grapevine cuttings infected with a wood pathogen (Phaeomoniella chlamydospora) in the presence of a root-inoculated biocontrol agent (Pythium oligandrum). Gene expression profiling was done using the Nimblegen whole genome array with 3 biological replicates of 3 pooled wood chunks harvested 0 and 14 d after treatment (pathogen infection, biocontrol agent inoculation, mock treatment).
Project description:Wood stiffness is the most important wood quality trait of forest trees for structural timber production. We investigated genes differentially transcribed in radiate pine trees with distinct wood stiffness using bulked segregant analysis (BSA) and cDNA microarrays. Transcript accumulation in earlywood (EW) and latewood (LW) of high (HS) and low stiffness (LS) trees in two progeny trials was compared. Radiata pine trees used for microarray experiment were selected from two progeny trials planted at Flynn and Kromelite, Australia. Based on the IML-based MOE measurement, five families with highest and lowest MOE each were selected from each trial, which represented two segregant populations with contrasting wood stiffness. Two individuals from each selected family were further sampled. Developing xylem tissues of selected trees in Flynn trial were sampled in spring (October) and autumn (April), representing earlywood (EW) and latewood (LW) of juvenile aged trees, respectively. Collection of xylem tissues from Kromelite trial was arranged in summer (late November) when latewood (LW) was formed. The xylem tissues were scraped at breast height with a sharp chisel after the bark was removed. In Flynn trial EW and LW tissues were collected from the same sampled trees on opposite sides of the trunk. Transcript accumulation was compared in trees with highest (HS) and lowest stiffness (LS) using xylem samples from Flynn collected in spring (EW) and autumn (LW), as well as Kromelite in summer (LW), respectively. Bulked segregant analysis (BSA) was used for the experiment design. Total RNA samples extracted from the five trees with HS were pooled at equal amount, and compared to the bulked five individuals with LS. This pooling strategy can partly minimize the genetic variation among different genotypes. Dye swaps were applied in each biological replicate.
Project description:Five years old Ulmus minor plants from three different genotypes, two tolerant and one sensitive to Dutch Elm disease, were inoculated with an aggressive local strain of Ophiostoma novo-ulmi (Z-BU1) while the other half were inoculated with sterile and distilled water as control treatment. following the procedure described by Solla et al. (2005). A healthy 3-year-old branch located around 2 meters tall, from both inoculated and control plants, were collected at 1, 3, 7, 14 and 21 days after inoculation. The stem from the branch was individualized and RNA isolated to hybridize two colors microarrays.
Project description:Wood maturation produces two distinct wood tissues: juvenile wood (JW) and mature wood (LW), which are the major cause of wood qaulity variation within a tree. We investigate transcriptome reorganization during wood maturation process in radiata pine using a newly developed 18k cDNA microarrays. Developing xylem tissues from nine sampled trees at 5- and 13-year-old each were randomly divided into three groups with three trees each. Total RNA samples extracted from three trees within a group were pooled at equal amount before using for microarray experiments. Using this pooling strategy three biological replicates were formed for each microarray experiment. Dye swap was applied in each biological replicate. Comparisons between JW and MW in spring (EW) and autumn (LW) were arranged in two separate microarray experiments: juvenile earlywood (JE) vs. mature earlywood (ME), juvenile latewood (JL) vs. mature latewood (ML)