Transcription profiling by array of Desulfovibrio vulgaris during the change from syntrophic growth with Methanosarcina barkeri to sulfidogenic metabolism
Ontology highlight
ABSTRACT: Global transcriptomics analysis of the Desulfovibrio vulgaris change from syntrophic growth with Methanosarcina barkeri to sulfidogenic metabolism
Project description:Expression data for Desulfovibrio alaskensis strain G20 grown on lactate in sulfate-limited monoculture and syntrophic coculture with Methanococcus maripaludis or Methanospirillum hungatei in chemostats at a low growth rate of 0.027h-1. 7 samples of Desulfovibrio alaskensis strain G20 grown in syntrophic coculture on lactate with either Methanococcus maripaludis (4 replicates) or Methanospirillum hungatei (3 replicates), and 5 samples of sulfate-limited monoculture growth of strain G20 on lactate.
Project description:Transcription profiling of Physcomitrella patens Reute strain gametophore, mature sporophyte and spore stage. These samples are part of an large-scale expression data set for the model moss Physcomitrella patens.
Project description:The Saccharomyces cerevisiae SFP1 is required for proper regulation of ribosome biogenesis and cell size in response to nutrients. A mutant deleted for SFP1 shows specific traits among which a slow growth phenotype, which is particularly evident during growth on glucose. To assess the effects of nutrients on the activity of Sfp1 independent by growth rate related feedback we grew an sfp1Πmutant and its isogenic reference strain in chemostat cultures, at the same specific growth rate, under glucose/ethanol-limitation. Our data show that Sfp1 is involved in the modulation of cell size and RiBi gene expression and that these two functions are differently influenced by nutrients. The continuous cultures were then pulsed with a glucose excess generating a situation of batch growth similar to shake flask cultures. The dynamic analysis of the metabolic and transcriptional response following the glucose addition suggested that Sfp1 plays a role at the crossroads of ribosome biogenesis and central carbon metabolism regulation. Finally, we show that the down-regulation of RP genes, which was observed in an sfp1Πstrain during shake flask growth, cannot be directly ascribed to the absence of Sfp1 but is most probably a secondary effect due to the low growth potential of the mutant strain. Experiment Overall Design: After ten volume changes, few seconds after the samples for the steady state analysis were collected, the anaerobic glucose pulse experiments were started by sparging the medium reservoir and the fermenter with pure nitrogen gas (airflow of 0.5 L min-1, Hoek-Loos, Schiedam, <5 ppm O2). NorpreneTM tubing and butyl septa were used to minimize oxygen diffusion into the anaerobic culture. Two minutes after nitrogen sparging and just before the addition of glucose, the medium and the effluent pumps were switched off. At this time point (which we will refer to as time T=0) the 200 mM glucose pulse was injected aseptically through a rubber septum. Experiment Overall Design: Sampling from chemostats, total RNA extraction, probe preparation and hybridization to Affymetrix Genechip® microarrays were performed as previously described (1). Samples were collected at steady state and then at 5, 10, 30, 60 and 120 minutes after the pulse. The results relative to steady state samples were derived from three independent cultures, those relative to the time course analysis were derived from two independent cultures. Experiment Overall Design: 1) Cipollina C., van den Brink J., Daran-Lapujade P., Pronk J.T., Vai M. and de Winde J.H. (2007) Revisiting the role of yeast Sfp1 in ribosome biogenesis and cell size control: A chemostat study. Microbiology. In press.
Project description:The Polycomb group (PcG) gene products mediate heritable silencing of developmental regulators in metazoans, participating in one of two distinct multimeric protein complexes, the Polycomb repressive complexes-1 (PRC1) and -2 (PRC2). PRC2 catalyses trimethylation of histone H3 at lysine 27 (H3K27) which in turn is thought to provide a recruitment site for PRC1. Recent studies demonstrate that mono-ubiquitylation of histone H2A at lysine 119 is important in PcG mediated silencing with the core PRC1 component Ring1A/B functioning as the E3 ligase8. PRC2 has been shown to share target genes with the core transcription network to maintain embryonic stem (ES) cells including Oct4 and Nanog. Here we identify an essential role for PRC1 in repressing developmental regulators in ES cells, and thereby in maintaining ES cell pluripotency. A significant proportion of the PRC1 target genes are also repressed by Oct4. We demonstrate that engagement of PRC1 and PRC2 at target genes is Oct4-dependent and moreover that Ring1B interacts with Oct4. Collectively these results show that PcG complexes are instrumental in Oct4-dependent repression required to maintain pluripotency of ES cells. This study provides a first functional link between a core ES cell regulator and global epigenetic regulation of the genome. Experiment Overall Design: Eed is a protein included in PRC2 (Polycomb repressor complex). Experiment Overall Design: We generated constitutive Eed KO mouse ES cells and observed gene expression using Affymetrix MOE430.2 microarray. Experiment Overall Design: These results were compared with other KO cells of PRC1 proteins (Ring1A, Ring1B) and other proteins in our study.
Project description:Exploration of transcriptome expression in 5 control and 4 familial dysautonomia (FD) human olfactory ecto-mesenchymal stem cells (hOE-MSCs) at very early (P1 and P2) and later (P5 and P9) cell passages.
Project description:This experiment evaluates quick (alarm) response to chilling in chilling-sensitive maize plants.<br>Maize inbred line cm109 were grown in optimal conditions until third leaf was fully developed. <br>At this stage plants were divided into three experimental variants: k0 - control plants, frozen<br>at the beginning of daylight, k4 - control plants kept in the same conditions and frozen after 4 hours<br>since beginning of daylight, c4 - plants kept in 14 deg. C for 4 hours since "dawn". At the mentioned<br>moments, leaves were harvested and frozen in liquid nitrogen for RNA isolation.