Project description:mTORC1 is inhibited by rapamycin or Torin1 in lymphangioleiomyomatosis (LAM) 621-101 (TSC2-deficient) cells, in which mTORC1 activity is elevated, and we compared these effects to inhibition of S6K and its target SRPK2.
Project description:Transcriptome analysis of total RNA samples from human cell line (LAM 621-101, female) Global gene and splice isoform expression profiling was performed to get a comprehensive view of transcriptome changes in human Lymphangioleiomyomatosis (LAM 621-101, female) cell line after inhibition of mTORC1 and SRPK2 proteins.
Project description:Epidermal hyperplasia, a characteristic feature of psoriatic skin lesions, is epigenetically driven by Enhancer of Zeste homolog 2 (EZH2). EZH2 and EZH2-mediated trimethylation of histone H3 lysine 27 (H3K27me3) are both abnormally upregulated in psoriatic lesions. To identify microRNAs that could potentially target these epigenetic regulators we profiled miRNAs from psoriatic lesional skin in comparison with healthy skin. Analysis of the differentially expressed miRNAs revealed miR-101, as one of the most significant miRNA, consistently downregulated in psoriatic lesions compared to the healthy skin. A clear inverse correlation in the expression of miR-101 versus EZH2 was apparent in normal skin versus psoriatic lesional skin indicating that EZH2 is a potential target of miR-101, which was further confirmed by luciferase assay. Investigating the upstream effectors of the miR-101- EZH2 pathway in psoriasis, we identified the pro-inflammatory cytokine IL-17 as regulator of miR-101 expression. Here we propose a model, depicting a pathway triggered by IL-17 – mediated modulation of miR-101 expression, which in turn elicit sustained expression of EZH2, leading to enhanced keratinocyte proliferation and epidermal hyperplasia in psoriasis. Taken together, this indicates that miR-101 is a potential therapeutic target to alleviate the downstream effects of IL-17 mediated epidermal hyperplasia in psoriasis.
Project description:Patients with Lymphangioleiomyomatosis (LAM) develop nodules of cells within the lung parenchyma. These lesions contain both TSC2-/- LAM cells, and wild type fibroblasts. We investigated the effect of TSC2-/- cells on the transcriptional profile of both normal fibroblasts and fibroblasts isolated from LAM patient tissue (LAFs) using Affymetrix Gene Chip arrays, to identify upregulated pathways which could contribute to LAM pathology. We used Affymetrix microarrays to detail the changes in the global profile of gene expression in fibroblasts following co-culture with 621-101 cells, and identified upregulation of several chemokines, indicating that the fibroblasts had adopted an inflammatory phenotype.
Project description:The first aim was to identify genes whose transcription is induced by rapamycin feeding in Drosophila larvae. Secondly, the goal was to find out which contribution the transcription factor REPTOR (=CG13624) has to the observed changes in expression. We thus compared gene epxression between rapamycin fed and control fed larvae in wild type larvae and in REPTOR KO larvae. 3 biological replicates from 4 conditions: control larvae plus/miuns rapamycin, KO larvae plus/minus rapamycin; overall 12 samples
Project description:The first aim was to identify genes whose transcription is induced by rapamycin feeding in Drosophila S2 cells. Secondly, the goal was to find out which contribution the transcription factors REPTOR (=CG13624) and REPTOR-BP (REPTOR-binding partner, =CG18619) has to the observed changes in expression. We thus compared gene epxression between rapamycin and control treated S2 cells in GFP, REPTOR or REPTOR-BP knockdown cells. 3 biological replicates from control knockdown plus/minus rapamycin and REPTOR knockdown plus/minus rapamycin; 2 biological replicates from REPTOR-BP knockdown cells plus/minus rapamycin; together those are 16 samples
Project description:Autophagy is an evolutionarily conserved mechanism of cellular self-digestion in which proteins and organelles are degraded through delivery to lysosomes. Defects in this process are implicated in numerous human diseases including cancer. To further elucidate regulatory mechanisms of autophagy, we performed a functional screen in search of microRNAs (miRNAs), which regulate the autophagic flux in breast cancer cells. In this study we identified the tumor suppressive miRNA, miR-101, as a potent inhibitor of basal, etoposide- and rapamycin-induced autophagy. Through transcriptome profiling, we identified three novel miR-101 targets, STMN1, RAB5A and ATG4D. siRNA-mediated depletion of these genes phenocopied the effect of miR-101 overexpression, demonstrating their importance in autophagy regulation. Importantly, overexpression of STMN1 could partially rescue cells from miR-101-mediated inhibition of autophagy, indicating a functional importance for this target. Finally, we show that miR-101-mediated inhibition of autophagy can sensitize breast cancer cells to 4-hydroxytamoxifen (4-OHT) mediated cell death. Collectively, these data establish a novel link between two highly important and rapidly growing research fields and present a new role for miR-101 as a key regulator of autophagy.
Project description:Autophagy is an evolutionarily conserved mechanism of cellular self-digestion in which proteins and organelles are degraded through delivery to lysosomes. Defects in this process are implicated in numerous human diseases including cancer. To further elucidate regulatory mechanisms of autophagy, we performed a functional screen in search of microRNAs (miRNAs), which regulate the autophagic flux in breast cancer cells. In this study we identified the tumor suppressive miRNA, miR-101, as a potent inhibitor of basal, etoposide- and rapamycin-induced autophagy. Through transcriptome profiling, we identified three novel miR-101 targets, STMN1, RAB5A and ATG4D. siRNA-mediated depletion of these genes phenocopied the effect of miR-101 overexpression, demonstrating their importance in autophagy regulation. Importantly, overexpression of STMN1 could partially rescue cells from miR-101-mediated inhibition of autophagy, indicating a functional importance for this target. Finally, we show that miR-101-mediated inhibition of autophagy can sensitize breast cancer cells to 4-hydroxytamoxifen (4-OHT) mediated cell death. Collectively, these data establish a novel link between two highly important and rapidly growing research fields and present a new role for miR-101 as a key regulator of autophagy. MCF-7 cells were seeded in 6-cm plates and independent triplicate transfections were performed the following day with 50 nM miR-101 or scramble control using Lipofectamine 2000. Total RNA was harvested 24 h after transfection using Trizol reagent. There are a total of six arrays included in this experiment, including three biological replicates of mRNA expression after miR-101 over-expression and three scramble controls in MCF-7 cells.
Project description:The goal of this study is to assess the role of ASH1 like histone lysine methyltransferase (ASH1L) in the biology of anaplastic thyroid cancer. CRISPR-Cas9 was used to create cell lines derived from BHT-101 anaplastic thyroid cancer cells with premature stop codons prior to the catalytic domain within both alleles of ASH1L. ChIP-seq for H3K36me2, the histone mark catalyzed by ASH1L, was performed on two KO cell lines, and compared to wild type BHT-101 cells.
Project description:The goal of this study is to assess the role of ASH1 like histone lysine methyltransferase (ASH1L) in the biology of anaplastic thyroid cancer. CRISPR-Cas9 was used to create 4 independent cell lines derived from BHT-101 anaplastic thyroid cancer cells with premature stop codons prior to the catalytic domain within both alleles of ASH1L. RNA-seq was performed on these 4 KO cell lines, and compared to 3 biological replicates of wild type BHT-101 cells.