Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

High-throughput sequencing of Arabidopsis thaliana pollen cDNA uncovers novel transcription and alternative splicing


ABSTRACT: Pollen grains of Arabidopsis thaliana contain two haploid sperm cells enclosed in a haploid vegetative cell. Upon germination, the vegetative cell extrudes a pollen tube that carries the sperm to an ovule for fertilization. Knowing the identity, relative abundance, and splicing patterns of pollen transcripts will improve understanding of pollen and allow investigation of tissue-specific splicing in plants. Most Arabidopsis pollen transcriptome studies have used the ATH1 microarray, which does not assay splice variants and lacks specific probe sets for many genes. To investigate the pollen transcriptome, we performed high-throughput sequencing (RNA-Seq) of Arabidopsis pollen and seedlings for comparison. Gene expression was more diverse in seedling, and genes involved in cell wall biogenesis were highly expressed in pollen. RNA-Seq detected at least 4,172 protein coding genes expressed in pollen, including 289 assayed only by non-specific probe sets. Additional exons and previously unannotated 5’ and 3’ UTRs for pollen-expressed genes were revealed. We detected regions in the genome not previously annotated as expressed; 14 were tested and 12 confirmed by PCR. Gapped read alignments revealed 1,908 high-confidence new splicing events supported by 10 or more spliced read alignments. Alternative splicing patterns in pollen and seedling were highly correlated. For most alternatively spliced genes, the ratio of variants in pollen and seedling was similar, except for some encoding proteins involved in RNA splicing. This study highlights the robustness of splicing patterns in plants and the importance of on-going annotation and visualization of RNA-Seq data using interactive tools such as Integrated Genome Browser.

INSTRUMENT(S): Illumina Genome Analyzer IIx

ORGANISM(S): Arabidopsis thaliana

SUBMITTER: Ann Loraine 

PROVIDER: E-MTAB-4242 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

RNA-seq of Arabidopsis pollen uncovers novel transcription and alternative splicing.

Loraine Ann E AE   McCormick Sheila S   Estrada April A   Patel Ketan K   Qin Peng P  

Plant physiology 20130416 2


Pollen grains of Arabidopsis (Arabidopsis thaliana) contain two haploid sperm cells enclosed in a haploid vegetative cell. Upon germination, the vegetative cell extrudes a pollen tube that carries the sperm to an ovule for fertilization. Knowing the identity, relative abundance, and splicing patterns of pollen transcripts will improve our understanding of pollen and allow investigation of tissue-specific splicing in plants. Most Arabidopsis pollen transcriptome studies have used the ATH1 microar  ...[more]

Similar Datasets

2022-12-14 | GSE201115 | GEO
2012-08-31 | E-GEOD-40501 | biostudies-arrayexpress
2022-12-02 | E-MTAB-10967 | biostudies-arrayexpress
2022-12-02 | E-MTAB-10965 | biostudies-arrayexpress
2022-12-02 | E-MTAB-10966 | biostudies-arrayexpress
2017-05-01 | GSE98145 | GEO
2012-08-31 | GSE40501 | GEO
2022-12-02 | E-MTAB-12137 | biostudies-arrayexpress
2023-05-07 | GSE231669 | GEO
2023-05-07 | GSE231668 | GEO