Amplification of 1q32.1 refines the molecular classification of endometrial carcinoma: SNP array
Ontology highlight
ABSTRACT: The experiment aimed at refining the classification of endometrial cancer by profiling somatic copy number aberrations (SCNAs). SCNAs affecting chromosome 1q32.1 significantly correlated with worse survival and functional validation of a plausible oncogene showed MDM4 as an oncogenic driver in 1q32.1 and a putative therapeutic target for NSMP ECs.
Project description:Methylation profiling was performed of human germ cell cancers of testicular and ovarian origin. The main goal of the study was to investigate chromosomal copy numbers and to assess differential methylation patterns.
Project description:Prostate cancer-associated stroma (CAS) plays an active role in malignant transformation, tumor progression, and metastasis. Molecular analyses of CAS have demonstrated significant changes in gene expression; however, conflicting evidence exists on whether genomic alterations in benign cells comprising the tumor microenvironment (TME) underlie gene expression changes and oncogenic phenotypes. This study evaluates the nuclear and mitochondrial DNA integrity of prostate carcinoma cells, CAS, matched benign epithelium and benign epithelium-associated stroma by whole genome copy number analyses, targeted sequencing of TP53, and fluorescence in situ hybridization. Comparative genomic hybridization (aCGH) of CAS revealed a copy-neutral diploid genome with only rare and small somatic copy number aberrations (SCNAs). In contrast, several expected recurrent SCNAs were evident in the adjacent prostate carcinoma cells, including gains at 3q, 7p, and 8q, and losses at 8p and 10q. No somatic TP53 mutations were observed in CAS. Mitochondrial DNA (mtDNA) extracted from carcinoma cells and stroma identified 23 somatic mtDNA mutations in neoplastic epithelial cells but only one mutation in stroma. Finally, genomic analyses identified no SCNAs, no loss of heterozygosity (LOH) or copy-neutral LOH in cultured cancer-associated fibroblasts (CAFs), which are known to promote prostate cancer progression in vivo. Agilent whole human genome aCGH oligonucleotide microarrays were used to assess copy number aberrations in 79 specimens from 20 patients as well as two pairs of cancer-associated fibroblasts (CAF) and benign/normal associated fibroblasts (NAF). 3 CAF/NAF sample pairs were also assessed for DNA copy number aberrations and copy-neutral LOH using the Infinium HumanOmniExpressExome BeadChip Kit.
Project description:Background: The expression of MDM4, a well-known p53-inhibitor, is positively associated with chemotherapy response and overall survival in epithelial ovarian cancer (EOC). The basis of this association remains elusive. Since the occurrence of metastasis is one of the factors responsible for the high death rate of this cancer, we analyzed MDM4 involvement in EOC metastatic process. Methods: In vivo and in vitro models, based on 2D and 3D assays, were employed to assess the activity of MDM4 in ovarian cancer progression. A 3D-bioprinting co-culture system was ad hoc developed for this study. Proteomic analysis was conducted on 3D multicellular tumour spheroids to assess pathways triggered by MDM4 overexpression. Results: In mouse models, increased MDM4 reduced intraperitoneal dissemination of human and murine EOC cells, independently of p53 and in a cell-autonomous way. Consistently, high MDM4 correlates with increased overall survival probability in large public data sets. 2D and 3D assays indicated that MDM4 impairs the early steps of the metastatic process. The 3D-bioprinting co-culture system showed reduced dissemination and intravasation into vessel-like structures of MDM4-expressing cells. Proteomic analysis of EOC spheroids revealed that MDM4 reduces protein synthesis and decreases mTOR signaling. Accordingly, MDM4 did not further inhibit EOC cell migration when its activity towards mTOR is blocked genetically or pharmacologically. Conversely, increased MDM4 reduced the efficacy of mTOR inhibitors in constraining EOC cell migration. Conclusions: Overall, these data clarify the antagonism of MDM4 towards EOC progression and suggest the usefulness of MDM4 assessment for tailored application of mTOR targeted therapy.
Project description:Fragile X syndrome (FXS) is a common form of inherited intellectual disability and is caused by an expansion of CGG repeats located in the 5Õ untranslated region (UTR) of the FMR1 gene, leading to hypermethylation and silencing of this locus. While the dramatic increase in DNA methylation (DNAm) of the FMR1 full mutation allele is well documented, the extent that these changes affect DNAm throughout the entire gene and the rest of the genome remains unexplored. Here, we examine the genome-wide methylation in peripheral blood (N = 9) as well as induced pluripotent stem cells (iPSCs; N = 10) from FXS individuals and controls (N = 53 and 9, respectively) and find the expected significant DNAm differences in the FMR1 promoter and 5Õ UTR, but also that these changes inversely persist throughout the FMR1 gene body. Importantly, we find there are no additional differential methylated loci (DML) throughout the remainder of the genome, indicating that the aberrant methylation of the FMR1 in FXS is locus-specific and does not change DNAm genome-wide. This study provides a comprehensive methylation profile of FXS and refines mechanistic considerations of FMR1 silencing. A total of 62 blood (53 controls + 9 Fragile X) samples analyzed using a linear regression model.
Project description:Murine and non-human primates (e.g. rhesus monkeys) represent excellent model systems to study human health and disease. However, use of these model systems for genomic studies is limited, particularly with array-based tools, as most have only been developed to survey the human genome. Here we present the optimization of a widely used human DNA methylation array, designed to detect 5-methylcytosine (5-mC), and show that non-human data generated using the optimized array reproducibly distinguishes tissue types within and between chimpanzee, rhesus, and mouse, with correlations near the human DNA level (R2 > 0.99). Genome-wide methylation analysis, using this approach, reveals 6,102 differentially methylated loci between rhesus placental and fetal tissues with pathways analysis significantly overrepresented for developmental processes. Restricting the analysis to oncogenes and tumor suppressors genes finds 125 differentially methylated loci, suggesting that rhesus placental tissue carries a cancer epigenetic signature. Moreover, we adapted the assay to detect 5-hydroxymethylcytosine (5-hmC) and find highly reproducible 5-hmC levels within human, rhesus, and mouse brain tissue that is species-specific with a hierarchical abundance among the three species (human > rhesus >> mouse). Together, these data show that this array-based methylation assay is generalizable to all mammals for the detection of both 5-mC and 5-hmC, greatly improving the utility of mammalian model systems to study the role of epigenetics in human health, disease, and evolution. Here we present the optimization of a widely used human DNA methylation array, designed to detect 5-methylcytosine (5-mC), and show that non-human data generated using the optimized array reproducibly distinguishes tissue types within and between chimpanzee, rhesus, and mouse, with correlations near the human DNA level (R2 > 0.99).
Project description:Adult-type diffuse gliomas comprise IDH-mutant astrocytomas, IDH-mutant 1p/19q codeleted oligodendrogliomas (ODG), and IDH-wildtype glioblastomas (GBM). GBM display genome instability, which may result from two genetic events leading to massive chromosome alterations: chromothripsis (CT) and whole-genome duplication (WGD). The better prognosis of the latter may be related to their genome stability compared to GBM. Pangenomic profiles of 297 adult diffuse gliomas were analyzed at initial diagnosis using SNP arrays, including 192 GBM and 105 IDH-mutant gliomas (61 astrocytomas and 44 ODG). Tumor ploidy was assessed with Genome Alteration Print and CT events with CTLPScanner and through manual screening.
Project description:Differentiation of CD4+T-cells into effector subsets is a critical component of the adaptive immune system and an incorrect response can lead to autoimmunity or immune deficiency. Cellular differentiation including T-cell differentiation is accompanied by large-scale epigenetic remodeling, including changes in DNA methylation at key regulators of T-cell differentiation. The TET family of enzymes were recently shown to be able to catalyse methylated cytosine (5mC) into 5-hydroxymethylcytosine (5hmC) enabling a pathway of active removal of DNA methylation. Here, we characterize 5hmC, 5mC and transcriptional dynamics during human CD4+T-cell polarisation in a time series approach and relate these changes to profiles in ex-vivo CD4+memory subsets. We observed large-scale remodelling during early CD4+T-cell differentiation which was predictive of subsequent changes during late time points, these changes were also related to disease associated regions which we show can act as functional regulatory elements. This dataset was designed to assess how gene expression changes over time during human CD4+T-cell polarization towards Th1 and Th2. DNA methylation was assessed in relationship to 5hmC levels and changes (see data series), we observed that regions gaining 5hmC early was highly predictive of regions losing DNA methylation during late time points. This submission contains data from the DNA methylation by array profiling of human CD4+T-cells in-vitro polarized towards Th1 and Th2 time-series. It is part of series containing 5hmC and DNA methylation profiling of the same samples. See related experiments E-MTAB-4685, E-MTAB-4686, E-MTAB-4687, E-MTAB-4689.
Project description:The methylation data were measured from longitudinal blood samples to study the longitudinal change of methylation in association with age.
Project description:Somatic copy number alterations (SCNAs) are pivotal in cancer progression and patient prognosis. Dysregulated long non-coding RNAs (lncRNAs), modulated by SCNAs, significantly impact tumorigenesis, including colorectal cancer (CRC). Nonetheless, the functional significance of lncRNAs induced by SCNAs in CRC remains largely unexplored. In this study, we elucidate that the overexpression of LOC101927668, driven by SCNAs, facilitates CRC proliferation and metastasis by recruiting hnRNPD, thus perturbing the RBM47/P53/P21 signaling pathway.
Project description:Methylation profiling of SF188 paediatric high grade glioma cell line isogenic clones carrying CRISR/Cas9 frameshift deletions in ATRX