ABSTRACT: We present a meta-dataset comprising of a total of 178 samples including both primary tumors and tumor-free pancreatic tissues from four independent GEO datasets. To minimise inter-platform variation, only datasets generated from the GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array) were processed to develop the meta-dataset. Using multiple open source R packages implemented in our previously developed bioinformatics pipeline, each dataset has been preprocessed with RMA normalisation, merged, and batch effect-corrected via Combat method. With increased sample size, the present meta-dataset serves an excellent 'discovery cohort' for discovering differentially expressed in diseased phenotype.
Project description:We present a meta-dataset comprising of a total of 212 samples including both primary tumors and tumor-free bladder tissues from four independent GEO datasets. To minimise inter-platform variation, only datasets generated from the GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array) were processed to develop the meta-dataset. Using multiple open source R packages implemented in our previously developed bioinformatics pipeline, each dataset has been preprocessed with RMA normalisation, merged, and batch effect-corrected via Combat method. With increased sample size, the present meta-dataset serves an excellent 'discovery cohort' for discovering differentially expressed in diseased phenotype.
Project description:We present a meta-dataset comprising of a total of 214 samples including both primary tumors and tumor-free melanoma tissues from four independent GEO datasets. To minimise inter-platform variation, only datasets generated from the GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array) were processed to develop the meta-dataset. Using multiple open source R packages implemented in our previously developed bioinformatics pipeline, each dataset has been preprocessed with RMA normalisation, merged, and batch effect-corrected via Combat method. With increased sample size, the present meta-dataset serves an excellent 'discovery cohort' for discovering differentially expressed in diseased phenotype.
Project description:We present a meta-dataset comprising of a total of 347 samples including both primary tumors and tumor-free renal tissues from six independent GEO datasets. To minimise inter-platform variation, only datasets generated from the GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array) were processed to develop the meta-dataset. Using multiple open source R packages implemented in our previously developed bioinformatics pipeline, each dataset has been preprocessed with RMA normalisation, merged, and batch effect-corrected via Combat method. With increased sample size, the present meta-dataset serves an excellent 'discovery cohort' for discovering differentially expressed in diseased phenotype.
Project description:We present a meta-dataset comprising of a total of 237 samples including both primary tumors and tumor-free prostate tissues from six independent GEO datasets. To minimise inter-platform variation, only datasets generated from the GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array) were processed to develop the meta-dataset. Using multiple open source R packages implemented in our previously developed bioinformatics pipeline, each dataset has been preprocessed with RMA normalisation, merged, and batch effect-corrected via Combat method. With increased sample size, the present meta-dataset serves an excellent 'discovery cohort' for discovering differentially expressed in diseased phenotype.
Project description:We present a meta-dataset comprising of a total of 737 samples including both primary tumors and tumor-free gastric tissues from seven independent GEO datasets. To minimise inter-platform variation, only datasets generated from the GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array) were processed to develop the meta-dataset. Using multiple open source R packages implemented in our previously developed bioinformatics pipeline, each dataset has been preprocessed with RMA normalisation, merged, and batch effect-corrected via Combat method. With increased sample size, the present meta-dataset serves an excellent 'discovery cohort' for discovering differentially expressed in diseased phenotype.
Project description:We present a meta-dataset comprising of a total of 401 samples including both primary tumors and tumor-free liver tissues from seven independent GEO datasets. To minimise inter-platform variation, only datasets generated from the GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array) were processed to develop the meta-dataset. Using multiple open source R packages implemented in our previously developed bioinformatics pipeline, each dataset has been preprocessed with RMA normalisation, merged, and batch effect-corrected via Combat method. With increased sample size, the present meta-dataset serves an excellent 'discovery cohort' for discovering differentially expressed in diseased phenotype.
Project description:We present a meta-dataset comprising of a total of 663 samples including both primary tumors and tumor-free ovarian tissues from ten independent GEO datasets. To minimise inter-platform variation, only datasets generated from the GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array) were processed to develop the meta-dataset. Using multiple open source R packages implemented in our previously developed bioinformatics pipeline, each dataset has been preprocessed with RMA normalisation, merged, and batch effect-corrected via Combat method. With increased sample size, the present meta-dataset serves an excellent 'discovery cohort' for discovering differentially expressed in diseased phenotype.
Project description:We present a meta-dataset comprising of a total of 1621 samples including both primary tumors and tumor-free lung tissues from 12 independent GEO datasets. To minimise inter-platform variation, only datasets generated from the GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array) were processed to develop the meta-dataset. Using multiple open source R packages implemented in our previously developed bioinformatics pipeline, each dataset has been preprocessed with RMA normalisation, merged, and batch effect-corrected via Combat method. With increased sample size, the present meta-dataset serves an excellent 'discovery cohort' for discovering differentially expressed in diseased phenotype.
Project description:We present a meta-dataset comprising of a total of 1566 samples including both primary tumors and tumor-free colorectal tissues from 15 independent GEO datasets. To minimise inter-platform variation, only datasets generated from the GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array) were processed to develop the meta-dataset. Using multiple open source R packages implemented in our previously developed bioinformatics pipeline, each dataset has been preprocessed with RMA normalisation, merged, and batch effect-corrected via Combat method. With increased sample size, the present meta-dataset serves an excellent 'discovery cohort' for discovering differentially expressed in diseased phenotype.
Project description:We present a meta-dataset comprising of a total of 2302 samples including both primary tumors and tumor-free breast tissues from 20 independent GEO datasets. To minimise inter-platform variation, only datasets generated from the GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array) were processed to develop the meta-dataset. Using multiple open source R packages implemented in our previously developed bioinformatics pipeline, each dataset has been preprocessed with RMA normalisation, merged, and batch effect-corrected via Combat method. With increased sample size, the present meta-dataset serves an excellent 'discovery cohort' for discovering differentially expressed in diseased phenotype.