Array-CGH in children with intellectual disabilities, developmental delays, autism spectrum disorders and multiple congenital abnormalities, dataset 3
Ontology highlight
ABSTRACT: This study includes the whole-genome screening of unbalanced chromosomal rearrangements (copy-number variants; CNV) in children with ID/DD, ASD and MCA. We identified a broad range of pathogenic/likely pathogenic CNVs as well as variants of unclear significance and likely benign variants. Our results confirm the benefit of array-CGH in the current clinical genetic diagnostics through the identification of genetic cause of ID/DD in the high proportion of affected children.
Project description:This study includes the whole-genome screening of unbalanced chromosomal rearrangements (copy-number variants; CNV) in children with ID/DD, ASD and MCA. We identified a broad range of pathogenic/likely pathogenic CNVs as well as variants of unclear significance and likely benign variants. Our results confirm the benefit of array-CGH in the current clinical genetic diagnostics through the identification of genetic cause of ID/DD in the high proportion of affected children.
Project description:This study includes the whole-genome screening of unbalanced chromosomal rearrangements (copy-number variants; CNV) in children with ID/DD, ASD and MCA. We identified a broad range of pathogenic/likely pathogenic CNVs as well as variants of unclear significance and likely benign variants. Our results confirm the benefit of array-CGH in the current clinical genetic diagnostics through the identification of genetic cause of ID/DD in the high proportion of affected children.
Project description:This study includes the whole-genome screening of unbalanced chromosomal rearrangements (copy-number variants; CNV) in children with ID/DD, ASD and MCA. We identified a broad range of pathogenic/likely pathogenic CNVs as well as variants of unclear significance and likely benign variants. Our results confirm the benefit of array-CGH in the current clinical genetic diagnostics through the identification of genetic cause of ID/DD in the high proportion of affected children.
Project description:This study includes the whole-genome screening of unbalanced chromosomal rearrangements (copy-number variants; CNV) in children with ID/DD, ASD and MCA. We identified a broad range of pathogenic/likely pathogenic CNVs as well as variants of unclear significance and likely benign variants. Our results confirm the benefit of array-CGH in the current clinical genetic diagnostics through the identification of genetic cause of ID/DD in the high proportion of affected children.
Project description:This study includes the whole-genome screening of unbalanced chromosomal rearrangements (copy-number variants; CNV) in children with ID/DD, ASD and MCA. We identified a broad range of pathogenic/likely pathogenic CNVs as well as variants of unclear significance and likely benign variants. Our results confirm the benefit of array-CGH in the current clinical genetic diagnostics through the identification of genetic cause of ID/DD in the high proportion of affected children.
Project description:This study includes the whole-genome screening of unbalanced chromosomal rearrangements (copy-number variants; CNV) in children with ID/DD, ASD and MCA. We identified a broad range of pathogenic/likely pathogenic CNVs as well as variants of unclear significance and likely benign variants. Our results confirm the benefit of array-CGH in the current clinical genetic diagnostics through the identification of genetic cause of ID/DD in the high proportion of affected children.
Project description:This analysis includes the whole-genome screening of unbalanced chromosomal rearrangements (copy-number variants; CNV) in a boy with neurodevelopmental disorders and epilepsy.
Project description:We performed array-CGH and targeted massive parallel sequencing using the commercial gene panel design ClearSeq Inherited Disease (Agilent Technologies) to identify the pathogenic sequence variants in a girl presenting an apparent microcephaly with mild dysmorphic facial features, delayed psychomotoric development and central hypotonia.
Project description:Large Xq22.3 deletion in Czech family inherited from unaffaceted mother leading to manifestation of X-linked contiguous gene deletion syndrome known as Alport syndrome with intellectual disability (ATS-ID) or AMME complex (OMIM #300194)
Project description:Retrospective investigation of genetic background of rapid progression of multiple myeloma into extramedullary relapse. Array-CGH showed chromothripsis in chromosome 18, hyperdiploidy, structural copy-number alterations. Utilization of novel NGS leukemia-related gene custom panel revealed patholological mutation in NRAS (c.181C>A; p.Gln61Lys) or variants of unknown significance in TP53, CUX1 and POU4F1.