Project description:We used tomato pollen in order to identify pollen stage-specific small non-coding RNAs (sncRNAs) and their target mRNAs. We further deployed elevated temperatures to discern stress responsive sncRNAs. For this purpose high throughput sncRNA-sequencing was performed for three-replicated sncRNAs libraries derived from tomato tetrad, post-meiotic, and mature pollen under control and heat stress conditions.
Project description:Transcriptome profiling of three developmental stages of immature male gametophyte intobacco (Nicotiana tabacum) Total RNA isolated from tobacco microspores and early and late bicellular pollen was hybridised on Agilent Tobacco Gene Expression Microarray 4x44K in two biological replicates per sample
Project description:Small RNA diversity and function has been widely characterized in various tissues of the sporophytic generation of the angiosperm model Arabidopsis thaliana. In contrast, there is limited knowledge about small RNA diversity and their roles in developing male gametophytes. We thus carried out small RNA sequencing on RNA isolated from four stages of developing Arabidopsis thaliana pollen. Spores from 4 stages of pollen development (UNM: Uninucleate microspore M-bM-^@M-^S BCP: Bicellular pollen M-bM-^@M-^S TCP: Tricellular pollen M-bM-^@M-^S MP: Mature pollen) were isolated using a percoll gradient-based method (Honys and Twell, 2004) and the small RNA fraction for each sample was isolated and sequenced by Illumina technology. Reference: Honys, D. and Twell, D. (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 5/11/R85.
Project description:The haploid multicellular male gametophyte of plants, the pollen grain, is a terminally differentiated structure whose function ends at fertilization. Unlike pollen grains, the immature gametophyte retains its capacity for totipotent growth when cultured in vitro. Haploid embryo production from cultured immature male gametophytes is a widely used plant breeding and propagation technique that was described nearly 50 years ago, but one that is poorly understood at the mechanistic level. Using a chemical approach, we show that the switch to haploid embryogenesis is controlled by the activity of histone deacetylases (HDACs). Blocking HDAC activity with trichostatin A (TSA) in cultured immature male gametophytes of Brassica napus leads to a large increase in the proportion of cells that switch from pollen to embryogenic growth. Embryogenic growth is enhanced by, but not dependent on, the high temperature stress that is normally used to induce haploid embryogenesis in B. napus. The immature male gametophyte of Arabidopsis thaliana, which is recalcitrant for haploid embryo development in culture, also forms embryogenic cell clusters after TSA treatment. TSA treatment of immature male gametophytes for as little as eight hours was accompanied by hyperacetylation of histones H3 and H4, and by the upregulation of genes involved in cell-cycle progression, the auxin pathway and cell wall catabolism pathways. We propose that the totipotency of the immature male gametophyte in planta is kept in check by an HDAC-dependent mechanism, and that high temperature or other stresses used to induce haploid embryo development in culture impinge on this HDAC-dependent pathway. 8 samples were analyzed. We generated the following pairwise comparisons between treatment and the corresponding mock treatment: TSA+CHX (2 replicates) vs CHX (2 replicates); TSA (2 replicates) vs DMSO (2 replicates).
Project description:Pollen tubes extend through pistil tissues and are guided to ovules where they release sperm for fertilization. Although pollen tubes can germinate and elongate in a synthetic medium, their trajectory is random and their growth rates are slower compared to growth in pistil tissues. Furthermore, interaction with the pistil renders pollen tubes competent to respond to guidance cues secreted by specialized cells within the ovule. The molecular basis for this potentiation of the pollen tube by the pistil remains uncharacterized. We used a surgical procedure to obtain large quantities of uncontaminated pollen tubes that grew through the pistil and defined their transcriptome by microarray analysis. We also characterized the transcriptome of in vitro-grown pollen tubes (for 0.5hours or 4hours) and dessicated mature pollen in Arabidopsis. Experiment Overall Design: Pollen and pollen tubes were collected as described in the protocols section for RNA extraction and hybridization on Affymetrix ATH1 Genechip microarrays.
Project description:We generated single loss-of-function knockout mutants targeting a specific rice gene, Ruptured Pollen Tube (RUPO, GTrD2; LOC_Os06g03610), a member of the Catharanthus roseus RLK1-like (CrRLK1L) subfamily. RUPO is strongly expressed in mature anthers and pollen, and its knockout results in reduced pollen ROS levels and impaired pollen tube elongation, leading to germination defects. Consequently, RUPO mutants fail to produce self-fertilized seeds. This dataset comprises mature anther transcriptome data from RUPO single mutants, with samples collected from mature anthers for analysis.
Project description:We generated single loss-of-function knockout mutant targeting a specific rice gene, GTrD5; LOC_Os11g20384), a member of the Suppressor of Actin 1 (Sac1) domain phosphoinositide phosphatase subfamily. GTrD5 is strongly expressed in mature anthers and pollen, and its knockout results in germination defects. Consequently, GTrD5 mutants have reduced self-fertilized seed production. This dataset comprises mature anther transcriptome data from GTrD5 single mutants, with samples collected from mature anthers for analysis.
Project description:We created a double loss-of-function/knockout mutant targeting three rice genes simultaneously. The two selected genes are as follows: OsABCG16 (LOC_Os06g51460), OsABCG28 (LOC_Os11g22350). These two ABCGs are strongly transcriptional expressed in the rice mature anthers (stages 13) and bi-/tricelluler pollen. The double mutant of these OsABCGs does not produce self-fertilizing seeds due to the short length of the pollen tube inside the pistil (male-sterile). This data is about mature anther transcriptome data about the double mutant of OsABCGs. We sampled mature anther for the analysis.
Project description:We created a triple loss-of-function/knockout mutant targeting three rice genes simultaneously. The three selected genes are as follows: OsADF1 (LOC_Os02g44470), OsADF6 (LOC_Os04g46910), and OsADF9 (LOC_Os07g30090). These three ADFs are strongly transcriptional expressed in the rice mature anthers (stages 13) and bi-/tricelluler pollen. The triple mutant of these OsADFs does not produce self-fertilizing seeds due to the short length of the pollen tube (male-sterile). This data is about mature anther transcriptome data about the triple mutant of OsADFs (ADFmT). We sampled mature anther for the analysis.