Effect of the IRE1a-XBP1 pathway inhibition during T helper 2 differentiation
Ontology highlight
ABSTRACT: The purpose of the study was to examine the role of the IRE1a-XBP1 pathway during Th2 lymphocyte activation and differentiation. In vitro Th2 cells were treated with 4μ8c, a drug that specifically inhibits IRE1a endonuclease activity, and transcriptomes were compared.
Project description:Epigenetic changes are crucial for the generation of immunological memory1-4. Failure to generate or maintain these changes will result in poor memory responses. Similarly, augmenting or stabilizing the correct epigenetic states offers a potential method of enhancing immune memory. Yet the transcription factors that regulate these processes are poorly defined, as are the chromatin modifying complexes they recruit and the chromatin modifications they control. Using pathogen infection models and three different mouse models, including a new conditional allele, we find that the widely expressed transcription factor Oct15, and its cofactor OCA-B6,7, are selectively required the in vivo generation of functional CD4 memory. In vitro, both proteins are also required to maintain a poised state at the Il2 target locus in resting but previously stimulated CD4 T cells, and to generate robust Il2 expression upon restimulation. OCA-B is also required for the robust re-expression of other known targets including Il17a, and Ifng. We identify an underlying mechanism involving OCA-B recruitment of the histone lysine demethylase Jmjd1a8 to targets such as Il2 and Ifng. The findings pinpoint Oct1 and OCA-B as unanticipated mediators of CD4 T cell memory. Examination of 4 different conditions in 2 genotypes
Project description:Epigenetic changes are crucial for the generation of immunological memory. Failure to generate or maintain these changes will result in poor memory responses. Similarly, augmenting or stabilizing the correct epigenetic states offers a potential method of enhancing immune memory. Yet the transcription factors that regulate these processes are poorly defined, as are the target genes they control and they chromatin-modifying complexes they recruit. Using model pathogens and three different mouse models, we find that the widely expressed transcription factor Oct1 and its cofactor OCA-B are selectively required for the in vivo generation of functional CD4 memory. In vitro, both proteins are required to maintain a poised state at the Il2 target locus in resting but previously stimulated CD4 T cells, and to generate robust Il2 expression upon restimulation. Gene expression profiling indicates that OCA-B is also required for the robust re-expression of multiple other targets including Ifng and Il17a. ChIPseq identify multiple differentially expressed direct targets. We identify an underlying mechanism involving OCA-B recruitment of the histone lysine demethylase Jmjd1a to targets such as Il2 and Ifng. The findings pinpoint Oct1 and OCA-B as unanticipated mediators of CD4 T cell memory. Examination of transcription factor occupancy in CD4 T cells upon rest and restimulation.
Project description:Gene expression measurements in Thp, Th1 and Th2 cells polarised from naIve CD4+ T-cells isolated from wildtype and T-bet fl/fl x Cd4-Cre BALB/c mice or from WT and Gata-3 fl/fl x Tnfrsf4-Cre C57BL/6 mice.
Project description:This SuperSeries is composed of the following subset Series: GSE22081: Discrete Roles of STAT4 and STAT6 Transcription Factors in Tuning Epigenetic Modifications and Transcription during Helper T Cell Differentiation (gene expression) GSE22104: Discrete Roles of STAT4 and STAT6 Transcription Factors in Tuning Epigenetic Modifications and Transcription during Helper T Cell Differentiation (ChIP-Seq) Refer to individual Series
Project description:Signal transducer and activator of transcription 4 (STAT4) and STAT6 are key factors in the specification of helper T cells; however, their direct roles in driving differentiation are not well understood. Using chromatin immunoprecipitation and massive parallel sequencing, we quantitated the full complement of STAT-bound genes, concurrently assessing global STAT-dependent epigenetic modifications and gene transcription using cells from cognate STAT-deficient mice. STAT4 and STAT6 each bound over 4000 genes with distinct binding motifs. Both played critical roles in maintaining chromatin configuration and transcription of a core subset of genes through the combination of different epigenetic patterns. Globally, STAT4 had a more dominant role in promoting active epigenetic marks, whereas STAT6 had a more prominent role in antagonizing repressive marks. Clusters of genes negatively regulated by STATs were also identified, highlighting previously unappreciated repressive roles. Therefore, STAT4 and STAT6 play wide regulatory roles in T helper specification. The roles of STAT proteins to shape T helper cell phenotype was investigated by comparing DNA binding profiles of STAT4 and STAT6 in Th1 and Th2 conditions. The functional outcome of STAT bindings was further evaluated by profiling histone epigenetic marks and gene expression changes between WT and STAT-deficient T cells in Th1 and Th2 conditions. Affymetrix Mouse Genome 430 2.0 Arrays were used to evaluate global gene expression.
Project description:Study the effect of PARP-14 and its activity on Th2 differentiation ChIP seq was performed on Th2 differentiated cells isolated from PARP-14 +/+ and PARP-14 -/- treated with or without PJ34
Project description:CD4+ T cells were extracted from mouse and human. They were activated in vitro with CD3/28 and cultured with Il4. ATAC-seq was then performed at different time points
Project description:Signal transducer and activator of transcription 4 (STAT4) and STAT6 are key factors in the specification of helper T cells; however, their direct roles in driving differentiation are not well understood. Using chromatin immunoprecipitation and massive parallel sequencing, we quantitated the full complement of STAT-bound genes, concurrently assessing global STAT-dependent epigenetic modifications and gene transcription using cells from cognate STAT-deficient mice. STAT4 and STAT6 each bound over 4000 genes with distinct binding motifs. Both played critical roles in maintaining chromatin configuration and transcription of a core subset of genes through the combination of different epigenetic patterns. Globally, STAT4 had a more dominant role in promoting active epigenetic marks, whereas STAT6 had a more prominent role in antagonizing repressive marks. Clusters of genes negatively regulated by STATs were also identified, highlighting previously unappreciated repressive roles. Therefore, STAT4 and STAT6 play wide regulatory roles in T helper specification. The roles of STAT proteins to shape T helper cell phenotype was investigated by comparing DNA binding profiles of STAT4 and STAT6 in Th1 and Th2 conditions. The functional outcome of STAT bindings was further evaluated by profiling histone epigenetic marks and gene expression changes between WT and STAT-deficient T cells in Th1 and Th2 conditions.