RNA-seq of primary aortic human endothelial cells before and after TNFα stimulation
Ontology highlight
ABSTRACT: To characterize the transcriptome of primary vascular endothelial cells (ECs) during TNFα-response, we performed total RNA-seq on primary human aortic ECs (HAEC), before and after TNFα (45 min. 10 ng/mL).
Project description:To identify conserved TNFα-induced changes in chromatin-accessibility in mammals, we performed ATAC-seq in primary vascular endothelial cells (ECs) isolated from the aortas of human (HAEC), mouse (MAEC) and cow (BAEC), before and after TNFα. We overlay our data with multi-species NF-κB binding data and identify multiple modes of NF-κB-chromatin interactions that are conserved during mammalian TNFα response. Our cross-species approach identifies conserved changes in chromatin-accessibility at NF-κB binding sites that are disease-relevant and essential during mammalian acute inflammation.
Project description:TNFα has an evolutionary conserved role in mediating inflammation via activation of the transcription factor NF-κB. The functions of individual NF-κB binding sites are not well understood. To identify conserved and functionally important NF-κB binding sites in mammals, we performed ChIP-seq to map the genome-wide binding of RELA and select histone modifications in primary vascular endothelial cells (ECs) isolated from the aortas of human (HAEC), mouse (MAEC) and cow (BAEC), before and after TNFα. The conserved RELA binding sites show strong epigenetic changes in response to TNFα and enrich near genes controlling vascular development and pro-inflammatory responses. Our method identifies novel modes of RELA-chromatin interactions that are conserved in mammals and shared between multiple cell-types. Particularly, genomic regions bound by RELA prior to stimulation are important responders during TNFα stimulation. We use CRISPR/Cas9 genome editing to validate the roles of the conserved RELA pre-bound sites near pro-inflammatory genes such as CCL2 and PLK2. Our evolutionary approach describes new aspects of mammalian NF-κB biology including its role within super-enhancers and relevance in inflammatory disorders.
Project description:Lifestyle and genetic factors can lead to the development of atherosclerosis and, ultimately, cardiovascular adverse events. Rodent models are commonly used to investigate mechanism(s) of atherogenesis. However, the 3Rs principles, aiming to limit animal testing, encourage the scientific community to develop new physiologically relevant in vitro alternatives. Leveraging the 96-chip OrganoPlate®, a microfluidic platform, we have established a three-dimensional (3D) model of endothelial microvessels-on-a-chip under flow using primary human coronary arterial endothelial cells. As functional readout, we have set up an assay to measure the adhesion of monocytes to the lumen of perfused microvessels. For monitoring molecular changes in microvessels, we have established the staining and quantification of specific protein markers of inflammation and oxidative stress using high content imaging, as well as analyzed transcriptome changes using microarrays. To demonstrate its usefulness in systems toxicology, we leveraged our 3D vasculature-on-a-chip model to assess the impact of the Tobacco Heating System (THS) 2.2, a candidate modified risk tobacco product, and the 3R4F reference cigarette on the adhesion of monocytic cells to endothelial microvessels. Our results show that THS 2.2 aerosol-conditioned medium had a reduced effect on monocyte-endothelium adhesion compared with 3R4F smoke-conditioned medium. In conclusion, we have established a relevant 3D vasculature-on-a-chip model for investigating leukocyte-endothelial microvessel adhesion. A case study illustrates how the model can be used for product testing in the context of systems toxicology-based risk assessment. The current model and its potential further development options also open perspectives of applications in vascular disease research and drug discovery.
Project description:Physiological shear stress, produced by blood flow, homeostatically regulates the phenotype of pulmonary endothelial cells exerting anti-inflammatory and anti-thrombotic actions and maintaining normal barrier function. In the pulmonary circulation hypoxia, due to high altitude or diseases such as COPD, causes vasoconstriction, increased vascular resistance and pulmonary hypertension. Hypoxia-induced changes in endothelial function play a central role in the development of this pulmonary hypertension. However, the direct interactive effects of hypoxia and shear stress on the pulmonary endothelial phenotype have not been extensively studied. We cultured human pulmonary microvascular endothelial cells (HPMEC) in normoxia or hypoxia while subjected to physiological shear stress or in static conditions. Unbiased proteomics was used to identify hypoxia-induced changes in protein expression. Using publicly available single cell RNA-seq datasets, differences in gene expression between the alveolar endothelial cells from COPD and healthy lungs were identified. 60 proteins were identified in HPMEC lysates whose expression changed in response to hypoxia in sheared but not in static conditions. mRNA for five of these (ERG, MCRIP1, EIF4A2, HSP90AA1 and DNAJA1) showed similar changes in the endothelial cells of COPD compared to healthy lungs. These data show that the proteomic responses of the pulmonary microvascular endothelium to hypoxia are significantly altered by shear stress and suggest that these differences are important in the development of hypoxic pulmonary vascular disease.
Project description:Rheumatoid arthritis (RA) is associated with accelerated atherosclerosis and premature cardiovascular death. Anti-TNF therapy is thought to reduce clinical cardiovascular disease risk and improve vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to explore the effects of certolizumab pegol (CZP) on TNF-activated human aortic endothelial cells (HAoECs. HAoECs were cultured in vitro and exposed to i) TNF alone, ii) TNF plus CZP, or iii) neither agent followed by transcription profiling.
Project description:We performed chromatin run on and sequencing (ChRO-seq) on TeloHAEC cells before and after TNFα stimulation to map locations of RNA polymerase and quantify nascent transcription at RELA peaks.
Project description:Systemic Lupus Erythematosus is associated with an increased risk of cardiovascular disease (CVD). Interferon-response genes have been associated with endothelial dysfunction in SLE patients. The aim of this study is to identify the effects of IFN-alpha on human endothelial cells in order to determine whether IFN-alpha can directly activate the endothelium.
Project description:The aim of our study is to investigate and compare the effects of carbon and photon irradiation on microvascular endothelial cells. Therefore we irradiated human pulmonary microvascular endothelial cells (HPMEC) with either 2Gy Carbon or 6Gy Photon (bioequivalent doses) and performed microarray analysis both 2 hours (short-term effect) and 6 days (long-term effects) after irradiation. All experiments were performed in 3 biological replicates.
Project description:Chemical hypoxia by CoCl2 treatment and pro-inflammatory cytokines induced distinct changes in the transcriptome of Swan 71 human trophoblasts. Not Paired. Samples were treated with control treatments (PBS) as well as with CoCl2, IL-1β, and TNFα.
Project description:Ceramides generated by the activity of the neutral sphingomyelinase 2 (NSM2) play a pivotal role in stress responses in mammalian cells. Dysregulation of sphingolipid metabolism has been implicated in numerous inflammation-related pathologies. However, its influence on inflammatory cytokine-induced signaling is yet incompletely understood. Here, we used proximity labeling to explore the plasma membrane proximal protein network of NSM2 and TNFα-induced changes thereof. We established Jurkat cells stably expressing NSM2 C-terminally fused to the engineered ascorbate peroxidase 2 (APEX2). Removal of excess biotin phenol substantially improved streptavidin-based affinity purification of biotinylated proteins. Using our optimized protocol, we determined NSM2-proximal biotinylated proteins and their changes within the first 5 min of TNFα stimulation by quantitative mass spectrometry. We observed significant dynamic changes in the NSM2 microenvironment in response to TNFαstimulation consistent with rapid remodeling of protein networks. Our data confirmed known NSM2 interactors and revealed that the recruitment of most proteins depended on NSM2 enzymatic activity. We measured significant enrichment of proteins related to vesicle-mediated transport, including proteins of recycling endosomes, trans-Golgi network, and exocytic vesicles in the proximitome of enzymatically active NSM2 within the first minutes of TNFα stimulation. Hence, the NSM2 proximal network and its TNFα-induced changes provide a valuable resource for further investigations into the involvement of NSM2 in the early signaling pathways triggered by TNFα.