RNA-seq samples of ten tissues for B73 abnormal 10 (B73_Ab10)
Ontology highlight
ABSTRACT: These RNA-seq samples represent ten different tissue types for a version of the maize reference genome B73 with an abnormal chromosome 10 containing several knobs on the long arm involved in meiotic drive. This genome was sequenced by the NAM Consortium Group. These samples correspond to project ID PRJEB35367.
Project description:These RNA-seq samples represent ten different tissue types for the fifth version of the maize reference genome B73, sequenced by the NAM Consortium Group. These samples correspond to project ID PRJEB32225.
Project description:These RNA-seq samples represent ten different tissue types within a diverse Nested Association Mapping (NAM) maize population that has been sequenced by the NAM Consortium Group. These samples correspond to project IDs PRJEB31061.
Project description:Some flowering plant and vertebrate genes are expressed primarily or exclusively from either the maternal or paternal allele, a phenomenon called genomic imprinting. Flowering plant imprinted gene expression has been described primarily in endosperm, a terminal nutritive tissue consumed by the embryo during seed development or after germination. Imprinted expression in Arabidopsis thaliana endosperm is orchestrated by differences in cytosine DNA methylation between the paternal and maternal genomes, as well as by Polycomb group (PcG) proteins. Currently only eleven imprinted Arabidopsis genes are known. Here we use extensive sequencing of cDNA libraries to identify many new paternally and maternally imprinted genes in A. thaliana endosperm, including transcription factors, proteins involved in hormone signaling, and epigenetic regulators. The imprinted status of many maternally-expressed genes is not altered by mutations in the DNA-demethylating glycosylase DEMETER, the DNA methyltransferase MET1 or the core PcG protein FIE, indicating that these genes are regulated by novel mechanisms or deposited from maternal tissues. We did not find any imprinted genes in the embryo. Our results demonstrate that imprinted gene expression, particularly from the maternal genome, is an extensive, mechanistically complex phenomenon that likely affects multiple aspects of seed development. Epigenetics Examination of genomic imprinting in Arabidopsis endosperm
Project description:Rice is a critically important food source but yields worldwide are vulnerable to periods of drought. We exposed eight genotypes of upland and lowland rice (Oryza sativa L. ssp. japonica and indica) to drought stress at the late vegetative stage and harvested leaves for protein extraction and subsequent label-free shotgun proteomics. Gene ontology analysis revealed some differentially expressed proteins were induced by drought in all eight genotypes; we speculate that these play a universal role in drought tolerance. However, some highly genotype-specific patterns of response to drought suggest that some mechanisms of metabolic reprogramming are not universal. Such proteins had largely uncharacterized functions, making them biomarker candidates for drought tolerance screens.
Project description:Imprinted gene expression occurs during seed development in plants and is closely tied to differential DNA methylation of maternal and paternal alleles, particularly at proximal transposable elements (TEs). Since the epigenetic modification of TEs can vary within species, we investigated intraspecific variation in imprinting, coupled with analysis of DNA methylation and small RNAs, among three strains of Arabidopsis that display diverse seed size phenotypes. Unexpectedly we found that one strain, Cvi, is globally CG hypomethylated. We discovered three examples of strain-specific imprinting caused by epigenetic variation at a TE. Our data allowed us to predict and experimentally validate an instances of allele-specific imprinting in additional strains based only on methylation patterns. We conclude that numerous differences in imprinting can evolve in highly similar, recently diverged genotypes due to epiallelic variation present within the species. Our data demonstrate that epiallelic variation and genomic imprinting intersect to produce novel gene expression patterns in seeds. Examination of parent-of-origin specific and total gene expression in embryo, endosperm, and whole seeds. Samples with the same heading are biological replicates (e.g. CVN1, CVN2, and CVN3). High throughput Illumina sequencing of poly-A selected RNA from Arabidopsis Col, Ler and Cvi reciprocal F1 hybrid embryo and endosperm tissue isolated at 6 days after pollination to identify imprinted genes.
Project description:In this study, we compared the transcriptome map of maize and sorghum using PacBio single-molecule long-read sequencing from multiple matched tissues in each species. Maize and sorghum are both important crops with similar overall plant architectures, but they have key differences, especially in regard to their inflorescences. To better understand these two organisms at the molecular level, we compared the transcriptional profiles of both protein-coding and non-coding transcripts in matched tissues using large-scale single-molecule sequencing from 130 RSII cells and 5 Sequel cells, as well as deep short-read RNA sequencing. The use of multiple size-fractionated libraries (<1 kb, 12 kb, 23 kb, 35 kb, and >5 kb) enhanced our capture of non-redundant transcripts in these tissues.
Project description:Drought often compromises yield in non-irrigated crops such as rainfed rice, imperiling the communities that depend upon it as a primary food source. In this study, two cultivated species (Oryza sativa cv. Nipponbare and Oryza glaberrima cv. CG14) and an endemic, perennial Australian wild species (Oryza australiensis) were grown in soil at 40% field capacity for 7-d (drought). The hypothesis was that the natural tolerance of O. australiensis to erratic water supply would be reflected in a unique proteomic profile. Leaves from droughted plants and well-watered controls were harvested for label-free quantitative shotgun proteomics. Physiological and gene ontology analysis confirmed that O. australiensis is responded uniquely to drought, with superior leaf water status and enhanced levels of photosynthetic proteins. Moreover, distinctive patterns of expression of proteins in drought were observed across the entire O. australiensis proteome. An intermediate impact of drought on photosynthetic and stress-response proteins is reported in O. glaberrima relative to O. sativa but the drought response was most striking in O. australiensis. For example, photosynthetic proteins decreased when O. sativa after drought, while a narrower range of stress-responsive proteins was up-regulated. Distinctive proteomic profiles and the expression levels of individual proteins with specific functions in response to drought in O. australiensis indicate the importance of this species as a source of stress tolerance genes.
Project description:Bolting is a key process in the growth and development of lettuce (Lactuca sativa L.). High temperature can induce earlier bolting which decreases in both quality and production of lettuce. However, knowledge underlying lettuce bolting is still lacking. To better understand the molecular basis of bolting, a comparative proteomics analysis was conducted on lettuce stems in the bolting period induced by high temperature (33 °C) compared with a control (20 °C) using iTRAQ-based proteomics, phenotypic measures, and biological verifications. High temperature induced lettuce bolting, while control temperature did not. Of the 6656 proteins identified, 758 proteins significantly altered their expression level induced by high-temperature relative to the control, of which 409 were up-regulated and 349 down-regulated. Proteins with abundance level change were mainly involved in photosynthesis, carbohydrate metabolism, stress response, hormone synthesis, and signal transduction. These differential proteins were mainly enriched in pathways associated with photosynthesis and tryptophan metabolism involving in auxin (IAA) biosynthesis. Among the differentially expressed proteins associated with photosynthesis and tryptophan metabolism were up-regulated. Moreover, in gibberellin (GA) biosynthesis pathway, 10 of main enzymes of P450 were up-regulated. Proteins related to SAUR and GRP, implicated in IAA and GA signal transduction were up-regulated, and the phosphorylation and ubiquitination related proteins regulating IAA and GA signal transduction were also induced. These findings indicate that a high temperature enhances the function of photosynthesis, IAA and GA synthesis and signal transduction to promote the process of bolting, which is in line with the physiology and transcription levels of IAA and GA metabolism. Our data provide a first comprehensive dataset for gaining novel understanding of the molecular basis underlying lettuce bolting induced by high temperature. It is potentially important for further functional analysis and genetic manipulation for molecular breeding to breed new cultivar of lettuce to restrain early bolting, which is vital for improving vegetable quality.
Project description:Roots adaptation to drought stress was analyzed using transcriptome and metabolomics profiles in two wild emmer wheat (Triticum turgidum ssp. dicoccoides) genotypes: Y12-3 (drought resistance) and A24-39 (drought susceptible). Roots samples of Y12-3 and A24-39 genotypes grown under well-watered (control) and water-stressed (7 days of withholding water) were collected for RNA extraction and hybridization on Affymetrix wheat microarrays chip.
Project description:Maize and sorghum are both important crops with similar overall plant architectures, but they have key differences, especially in regard to their inflorescences. To better understand these two organisms at the molecular level, we compared the expression profiles of both protein-coding and non-coding transcripts in 11 matched tissues using single-molecule long-read and deep RNA sequencing. In this study, maize B73 line was planted at Cold Spring Harbor Laboratory upland farm, 11 tissues together with previously reported six tissues were collected, RNA was extracted, library was made and sequenced on the HiSeq 2500 PE125 platform at Woodbury Genome Center.