Transcription profiling of muscle from hypopituitary men before and after growth hormone treatment to investigate the effect of growth hormone on metabolic processes in muscle
Ontology highlight
ABSTRACT: Muscle is a target of growth hormone (GH) action and a major contributor to whole body metabolism. Little is known about how GH regulates metabolic process in muscle or the extent to which muscle contributes to changes in whole body substrate metabolism during GH treatment. To identify GH-responsive genes that regulate substrate metabolism in muscle, we studied six hypopituitary men who underwent whole body metabolic measurement and muscle biopsies before and after two weeks of GH treatment (0.5mg/day). Transcript profiles of four subjects were analysed using Affymetrix GeneChips. Serum insulin-like growth factor I (IGF-I), procollagens I and III were measured by RIA. GH increased serum IGF-I, procollagens I and III, enhanced whole body lipid oxidation, reduced carbohydrate oxidation, and stimulated protein synthesis. It induced gene expression of IGF-I and collagens in muscle. GH reduced expression of several enzymes regulating lipid oxidation and energy production. It reduced calpain 3, increased ribosomal protein L38 expression, and displayed mixed effects on genes encoding myofibrillar proteins. It increased expression of circadian gene CLOCK, and reduced that of PERIOD. In summary, GH exerted concordant effects on muscle expression and blood levels of IGF-I and collagens. It induced changes in genes regulating protein metabolism in parallel with a whole body anabolic effect. The discordance between muscle gene expression profiles and metabolic responses suggests that muscle is unlikely to contribute to GH-induced stimulation of whole body energy and lipid metabolism. GH may regulate circadian function in muscle by modulating circadian gene expression with possible metabolic consequences.
Project description:Adipose tissue is a major target of GH action. GH stimulates lipolysis and reduces fat mass. The molecular mechanism underlying cellular and metabolic effects of GH in adipose tissue is not well understood. The aim of this study is to identify GH-responsive genes that regulate lipid metabolism in adipose tissue. Eight men with GH deficiency underwent measurement of plasma free fatty acid (FFA), whole body lipid oxidation and fat biopsies before and after one month of GH treatment (0.5mg/day). Gene expression profiling was performed using Agilent 44K G4112F arrays utilising a two-colour design. Differentially expressed genes were identified using an empirical Bayes, moderate t-test, with a false discovery rate of < 5%. Genes involved in GH receptor signalling, lipolysis, triglyceride biosynthesis, adipocyte differentiation and function were analysed. Target genes were validated by quantitative RT-PCR. GH increased circulating IGF-I and FFA and stimulated fat oxidation. A total of 246 genes were differentially expressed, of which 135 were up-regulated and 111 down-regulated. GH enhanced adipose tissue expression of IGF-I and SOCS3. It did not change expression of key enzymes governing lipolysis, but differentially regulated genes promoting diacylglycerol syntheses. GH repressed hydroxysteroid (11-beta) dehydrogenase 1, which activates local cortisol production, and genes encoding components of extracellular matrix that regulate inflammation. GH induced concordant change in circulating IGF-I and expression in adipose tissue. GH stimulation of lipolysis is mediated at a translational and/or post-translational level. GH suppressed genes encoding local factors regulating adipocyte differentiation, function and inflammation.
Project description:In skeletal muscle, STAT5a/b transcription factors are critical for normal postnatal growth, whole-animal glucose homeostasis, and local IGF-1 production. These observations have led us to hypothesize that STAT5a/b are critical for maintenance of normal muscle mass and function. To investigate this, mice with a skeletal muscle-specific deletion of the Stat5a/b genes (Stat5MKO) were used. Stat5MKO mice displayed reduced muscle mass, altered fiber-type distribution and reduced activity. On a molecular level, gene expression in skeletal muscle of Stat5MKO and control mice was analyzed by microarrays and real-time PCR, both in the presence and absence of growth hormone (GH) stimulation. Several genes involved in muscle growth, fiber-type and metabolism were significantly changed. Specifically in the quadriceps, a muscle almost exclusively composed of type II fibers, the absence of STAT5a/b led to increased expression of several genes associated with type I fibers and the de novo appearance of type I fibers. Additionally, it is shown here that expression of the androgen receptor gene (Ar) is controlled by GH through STAT5a/b. The link between STAT5a/b and Ar gene is likely through direct transcriptional regulation, as chromatin immunoprecipitaion of the Ar promoter region in C2C12 myoblasts was accomplished by antibodies against STAT5a. These experiments demonstrate an important role for STAT5a/b in skeletal muscle physiology and they provide a direct link to androgen signaling. Experiment Overall Design: Total 6 WT controls and 6 stat5a/b KO mice, treated or w/o GH
Project description:We generated h-hepatocyte chimeric mice with livers that were predominantly repopulated with h-hepatocytes in a h-growth hormone (GH)-deficient state. Using microarray profiles, comparison between h-hepatocytes from h-GH-treated and untreated mice identified 14 GH-up-regulated and four GH-down-regulated genes, including IGF-1, SOCS2, NNMT, IGFLS, P4AH1, SLC16A1, and SRD5A1, and FADS1 and AKR1B10, respectively. The chimeric mice were treated or untreated with h-GH at 2.5 mg/kg b.w. /day for 2 weeks before sacrifice. Hepatocytes or liver tissue were isolated from the mouse livers and their cDNAs were used for microarray analysis.
Project description:Although studies have established that exogenous growth hormone (GH) treatment stimulates growth in fish, its effects on target tissue gene expression are not well characterized. We assessed the effects Posilac® (Monsanto Co., St. Louis, MO), a recombinant bovine somatotropin, on tissue transcript levels. Transcript abundance was measure in liver and muscle using the GRASP 16 K cDNA microarray. A selection of the genes identified as altered with the microarray, and also transcripts for insulin-like growth factors, growth hormone receptors (GHR) and myostatins were measured by realtime PCR in the liver, muscle, brain, kidney, intestine, stomach, gill and heart. In general, transcripts identified as differentially regulated in the muscle on the microarray showed similar direction of expression in the other non-hepatic tissues. Rainbow trout were selected from two high growth rate and two low growth rate families. A total of 113 and 67 transcripts were identified by microarray as differentially expressed with GH treatment across growth rate for muscle and liver respectively. The largest proportion of the transcripts represented novel transcripts, followed by immune and metabolism related genes. The immune related genes were primarily modulated in the liver and indicate activation of a non-specific immune response. The metabolic genes include lipid metabolism, oxidative phosphorylation and one carbon metabolism pathway transcripts. Most notable among the growth axis genes measured by realtime PCR were increases in GHR1 and-2 transcript in liver and muscle. Our results indicate that short-term GH treatment activates the immune system, shifts the metabolic sectors and modulates growth regulating genes. Keywords: Growth Hormone Injection Muscle and Liver Gene Expression Rainbow trout (hatched March 2005) selected for extreme growth rate were obtained from NCCCWA brood stock. Families were selected based on body weight at 7 months of age and thermal growth coefficient for the final month of growth. The two high growth families used in the study were in the top 2% in terms of growth rate, and the low growth families were in the lowest 10% for growth rate. Fish acclimated to the new tanks for two weeks prior to initiation of the treatments. Fish from each family were randomly selected to receive one of three treatments: 1) Posilac® injection (120 mg/kg BW, n = 4 per family); 2) vehicle injection (n = 4 per family); or 3) untouched controls (n = 2 per family). We had determined there was no effect to growth or the GH/IGF-I axis in the vehicle treated fish, and therefore, all of the microarray hybridizations were made between the GH and vehicle injected groups. This study included a total of 16 two-channel arrays designed for the direct comparison of GH treatment levels. That is, for each of the four groups, 1) High Growth Rate Liver; 2) Low Growth Rate Liver; 3) High Growth Rate Muscle; and 4) Low Growth Rate Muscle, four slide were hybridizes using individual RNA samples from individual fish. RNA isolation from each tissue/organ sample was handled separately (without pooling) with the purpose of using biological replications. We hybridized two slides with the GH cDNA labeled with Alexa 555 and vehicle cDNA labeled with Alexa 647; and two slides, using unique RNA samples, for the with GH cDNA labeled with Alexa 647 and tissue from the vehicle injected group labeled with Alexa 647 within each tissue and growth rate. Sixteen slides were used in the current study representing 32 individual tissue samples, meaning a total of four biological replicates for each treatment group.
Project description:E2 and GH are critical regulators of growth and intermediate metabolism in mammals. Hypothyroidism causes endocrine and metabolic disturbances in the liver with features that mimic deficiencies of E2 or GH signalling. In this work, we used the hypothyroid-orchiectomized (TXOX) adult rat model to evaluate the influence of E2 and GH on the liver in terms of global changes in gene expression. This study shows the changes in hepatic transcriptome that were provoked by E2 benzoate (50 ug/kg; sc; 5 days per week x 27 days), intermittent GH administration (0.3 mg/kg/day;sc injection divided into two daily injections x 7 days) or the combination of E2 plus GH in TXOX rats. E2 influenced the liver transcriptome, particularly genes involved in metabolism of lipids and endo-xenobiotics, and the GH-regulated endocrine, metabolic, gender, and immune responses. E2 did not prevent the inhibitory effects of GH on urea and amino acid metabolism-related genes. Notably, the combination of E2 and GH caused deleterious effects on transcriptional immune response. These results highlight the role of E2 as a critical regulator of liver metabolism in mammals and provide insights into the functional interplay between E2 and GH in the liver. Groups=4; Biological replicates = 4 per group; Samples=16; Reference samples=TXOX group. Adult (3 months old) male Sprague-Dawley rats (n=4 per group) were used throughout these experiments. The generation of TXOX was performed by adding methimazole (MMI; 0.05%) to the drinking water for 5 weeks starting on postnatal day (PND) 59 until sacrifice on PND94. Two weeks after starting MMI administration, male rats were castrated (OX) to make TXOX rats. Four days after OX, we began treatment with E2 benzoate (TXOXE2) or vehicle (TXOX) to TXOX rats for 20 days followed for 7 days by either vehicle plus GH (TXOXGH) or by E2 plus GH (TXOXE2GH). Twenty-four hours (in the case of E2) or twelve hours (in the case of GH) after the last injection, the animals were killed by exsanguinations. Portions of the liver were snap frozen in liquid nitrogen and stored at -80C until processed for mRNA analysis.
Project description:Metabolic flexibility in skeletal muscle is essential for maintaining healthy glucose and lipid metabolism, and its dysfunction is closely linked to metabolic diseases. Exercise enhances metabolic flexibility, making it an important tool for discovering mechanisms that promote efficient energy metabolism. We herein discover pantothenate kinase 4 (PanK4) as a conserved exercise target with high abundance in muscle. Germline deletion of Pank4 reduces circulating IGF-1 and stunts growth in mice. Muscle-specific deletion of Pank4 leads to a reduction in carnitzed and in impaired fatty acid oxidation in oxidative muscle which is related to higher acetyl-CoA and malonyl levels. Acetyl-CoA levels were persistently elevated in SkM lacking PanK4, independent of prandial state. In addition to perturbations of fatty acid oxidation, high SkM acetyl-CoA levels were associated with whole-body glucose intolerance, impaired insulin-stimulated glucose uptake into glycolytic SkM and impaired SkM glucose uptake during exercise. Conversely, we show that an increase in PanK4 lowers acetyl-CoA and increases glucose uptake in glycolytic SkM. Our findings identify PanK4 as a conserved exercise target that regulates SkM acetyl-CoA levels and plays a key role in lipid and glucose metabolism.
Project description:Myostatin is a negative regulator of muscle growth and metabolism and its inhibition in mice improves insulin sensitivity, increases glucose uptake into skeletal muscle, and decreases total body fat. A recently described mammalian protein called Mss51 is significantly downregulated with myostatin inhibition. In vitro disruption of Mss51 results in increased levels of ATP, β-oxidation, glycolysis and oxidative phosphorylation. To determine the in vivo biological function of Mss51 in mice, we disrupted the Mss51 gene by CRISPR/Cas9 and found that Mss51 KO mice have normal muscle weights and fiber-type distribution but reduced fat pads. Myofibers isolated from Mss51 KO mice showed an increased oxygen consumption rate compared to WT controls, indicating an accelerated rate of skeletal muscle metabolism. The expression of genes related to oxidative phosphorylation and fatty acid β-oxidation were enhanced in skeletal muscle of Mss51 KO mice compared to that of WT mice. We found that mice lacking Mss51 and challenged with a high fat diet were resistant to diet-induced weight gain, had increased whole-body glucose turnover and glycolysis rate, and increased systemic insulin sensitivity and fatty acid β-oxidation. These findings demonstrate that Mss51 modulates skeletal muscle mitochondrial respiration and regulates whole-body glucose and fatty acid metabolism, making it a potential target for obesity and diabetes.
Project description:By directly comparing gene expression in wild type, domestic, and GH transgenic strains of salmon, we have found that domestication and GH transgenesis are modifying similar genetic pathways. Genes in many different physiological pathways show modified expression in domestic and GH transgenic strains relative to wild-type, but effects are strongly correlated. Genes specifically involved in growth regulation (IGF-I, GHR, IGF-II, THR) are also concordantly regulated in domestic and transgenic fish, and both strains show elevated levels of circulating IGF-I. Muscle expression of GH in nontransgenic strains was found to be elevated in domesticated fish relative to wild type, providing a possible mechanism for growth enhancement. These data have implications for genetic improvement of existing domesticated species as well as regulation of emerging transgenic strains. Keywords: Expression profiling by array
Project description:By directly comparing gene expression in wild type, domestic, and GH transgenic strains of salmon, we have found that domestication and GH transgenesis are modifying similar genetic pathways. Genes in many different physiological pathways show modified expression in domestic and GH transgenic strains relative to wild-type, but effects are strongly correlated. Genes specifically involved in growth regulation (IGF-I, GHR, IGF-II, THR) are also concordantly regulated in domestic and transgenic fish, and both strains show elevated levels of circulating IGF-I. Muscle expression of GH in nontransgenic strains was found to be elevated in domesticated fish relative to wild type, providing a possible mechanism for growth enhancement. These data have implications for genetic improvement of existing domesticated species as well as regulation of emerging transgenic strains. Keywords: Expression profiling by array Microarray analyses were performed on four or five individual fish per group of wild type, domesticated, and GH transgenic salmon hybridized (one slide per individual) against a common wild-type RNA pool.
Project description:Identification and validation of the pathways and functions regulated by the orphan nuclear receptor, ROR alpha1, in skeletal muscle The retinoic acid receptor-related orphan receptor (ROR) alpha has been demonstrated to regulate lipid metabolism. We were interested in the physiologically relevant roles, and pathways regulated by RORalpha1 action in skeletal muscle. This major mass organ accounts for ~40% of the total body mass, and significant levels of lipid catabolism, glucose disposal and energy expenditure. We utilized the strategy of targeted muscle specific expression of a truncated (dominant negative) RORalphaâDE in transgenic mice, to investigate RORalpha1 signalling (and function) in this peripheral tissue. Expression profiling and pathway analysis indicated that RORalpha regulated genes involved in: (i) lipid and carbohydrate metabolism, cardiovascular and metabolic disease; and (ii) the LXR nuclear receptor signaling pathway and, (iii) the Akt and AMPK signaling cascades. This analysis was extensively validated by rigorous qPCR analysis using TaqMan Low Density Arrays, coupled to rigorous statistical analysis (with Empirical Bayes, and Benjamini-Hochberg). Moreover, westerns and metabolic profiling were utilized to validate the genes, proteins and pathways (lipogenic, Akt, AMPK and fatty acid oxidation) involved in the regulation of metabolism by RORalph1. The identified genes and pathways were in concordance with the demonstration of hyperglycemia, glucose intolerance, attenuated insulin stimulated phosphorylation of Akt, and impaired glucose uptake in the transgenic heterozygous Tg-RORalphaâDE animals. In conclusion, we propose that RORalpha1 is involved in regulating the Akt2-AMPK signalling pathways in the context of lipid homeostasis in skeletal muscle. Total RNA was compared from quadriceps femoris of both transgenic and wild type mice. Transgenic mice contained a truncated version of human RORalpha1 (RORalpha1delDE) where the entire E region and part of the hinge/D region have been removed. This transgene is driven by a skeletal muscle specific human skeletal alpha-actin (HSA) promoter.