Organo-Montmorillonite Modified by Gemini Quaternary Ammonium Surfactants with Different Counterions for Adsorption toward Phenol.
Ontology highlight
ABSTRACT: The discharge of industrial phenol pollutants causes great harm to the natural environment and human health. In this study, phenol removal from water was studied via the adsorption of Na-montmorillonite (Na-Mt) modified by a series of Gemini quaternary ammonium surfactants with different counterions [(C11H23CONH(CH2)2N+ (CH3)2(CH2)2 N+(CH3)2 (CH2)2NHCOC11H23·2Y-, Y = CH3CO3-, C6H5COO- and Br-, 12-2-12·2Y-]. The results of the phenol adsorption indicated that MMt-12-2-12·2Br-, MMt-12-2-12·2CH3CO3- and MMt-12-2-12·2C6H5COO- reached the optimum adsorption capacity, which was 115.110 mg/g, 100.834 mg/g and 99.985 mg/g, respectively, under the conditions of the saturated intercalation concentration at 2.0 times that of the cation exchange capacity (CEC) of the original Na-Mt, 0.04 g of adsorbent and a pH = 10. The adsorption kinetics of all adsorption processes were in good agreement with the pseudo-second-order kinetics model, and the adsorption isotherm was better modeled by Freundlich isotherm. Thermodynamic parameters revealed that the adsorption of phenol was a physical, spontaneous and exothermic process. The results also showed that the counterions of the surfactant had a certain influence on the adsorption performance of MMt for phenol, especially the rigid structure, hydrophobicity, and hydration of the counterions.
SUBMITTER: Wei R
PROVIDER: S-EPMC10004245 | biostudies-literature | 2023 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA