Unknown

Dataset Information

0

The survival of Amblyomma sculptum ticks upon blood-feeding depends on the expression of an inhibitor of apoptosis protein.


ABSTRACT:

Background

The tick Amblyomma sculptum is the major vector of Rickettsia rickettsii, the causative agent of the highly lethal Brazilian spotted fever. It has been shown that R. rickettsii inhibits apoptosis in both human endothelial cells and tick cells. Apoptosis is regulated by different factors, among which inhibitors of apoptosis proteins (IAPs) play a central role. In the study reported here, we selected an IAP of A. sculptum that has not yet been characterized to assess its role in cell death and to determine the effects of its gene silencing on tick fitness and R. rickettsii infection.

Methods

An A. sculptum cell line (IBU/ASE-16) was treated with specific double-stranded RNA (dsRNA) for either IAP (dsIAP) or green fluorescent protein (dsGFP; as a control). The activity of caspase-3 and the exposure of phosphatidylserine were determined in both groups. In addition, unfed adult ticks, infected or not infected with R. rickettsii, were treated with either dsIAP or dsGFP and allowed to feed on noninfected rabbits. In parallel, noninfected ticks were allowed to feed on an R. rickettsii-infected rabbit. Ticks (infected or not with R. rickettsii) that remained unfed were used as a control.

Results

Caspase-3 activity and the externalization of phosphatidylserine were significantly higher in IBU/ASE-16 cells treated with dsIAP than in those treated with dsGFP. The mortality rates of ticks in the dsIAP group were much higher than those in the dsGFP group when they were allowed to feed on rabbits, independent of the presence of R. rickettsii. Conversely, lower mortality rates were recorded in unfed ticks.

Conclusions

Our results show that IAP negatively regulates apoptosis in A. sculptum cells. Moreover, IAP-silenced ticks experienced higher mortality rates following the acquisition of a blood meal, suggesting that feeding may trigger the activation of apoptosis in the absence of this physiological regulator. These findings indicate that IAP is a potential antigen for an anti-tick vaccine.

SUBMITTER: Nassar M 

PROVIDER: S-EPMC10007823 | biostudies-literature | 2023 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

The survival of Amblyomma sculptum ticks upon blood-feeding depends on the expression of an inhibitor of apoptosis protein.

Nassar Marcelly M   Martins Larissa A LA   de Assis Josiane Betim JB   Esteves Eliane E   Sá-Nunes Anderson A   Labruna Marcelo B MB   Daffre Sirlei S   Fogaça Andrea C AC  

Parasites & vectors 20230310 1


<h4>Background</h4>The tick Amblyomma sculptum is the major vector of Rickettsia rickettsii, the causative agent of the highly lethal Brazilian spotted fever. It has been shown that R. rickettsii inhibits apoptosis in both human endothelial cells and tick cells. Apoptosis is regulated by different factors, among which inhibitors of apoptosis proteins (IAPs) play a central role. In the study reported here, we selected an IAP of A. sculptum that has not yet been characterized to assess its role in  ...[more]

Similar Datasets

| S-EPMC6446183 | biostudies-literature
| PRJNA1095877 | ENA
| PRJNA343654 | ENA
| PRJNA343683 | ENA
| PRJNA309641 | ENA
| S-EPMC6200015 | biostudies-literature
| S-EPMC9169286 | biostudies-literature
2006-06-08 | GSE5010 | GEO
| S-EPMC7444575 | biostudies-literature
2010-06-11 | E-GEOD-5010 | biostudies-arrayexpress