Unknown

Dataset Information

0

A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies.


ABSTRACT: Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.

SUBMITTER: Li Z 

PROVIDER: S-EPMC10008172 | biostudies-literature | 2022 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies.

Li Zilin Z   Li Xihao X   Zhou Hufeng H   Gaynor Sheila M SM   Selvaraj Margaret Sunitha MS   Arapoglou Theodore T   Quick Corbin C   Liu Yaowu Y   Chen Han H   Sun Ryan R   Dey Rounak R   Arnett Donna K DK   Auer Paul L PL   Bielak Lawrence F LF   Bis Joshua C JC   Blackwell Thomas W TW   Blangero John J   Boerwinkle Eric E   Bowden Donald W DW   Brody Jennifer A JA   Cade Brian E BE   Conomos Matthew P MP   Correa Adolfo A   Cupples L Adrienne LA   Curran Joanne E JE   de Vries Paul S PS   Duggirala Ravindranath R   Franceschini Nora N   Freedman Barry I BI   Göring Harald H H HHH   Guo Xiuqing X   Kalyani Rita R RR   Kooperberg Charles C   Kral Brian G BG   Lange Leslie A LA   Lin Bridget M BM   Manichaikul Ani A   Manning Alisa K AK   Martin Lisa W LW   Mathias Rasika A RA   Meigs James B JB   Mitchell Braxton D BD   Montasser May E ME   Morrison Alanna C AC   Naseri Take T   O'Connell Jeffrey R JR   Palmer Nicholette D ND   Peyser Patricia A PA   Psaty Bruce M BM   Raffield Laura M LM   Redline Susan S   Reiner Alexander P AP   Reupena Muagututi'a Sefuiva MS   Rice Kenneth M KM   Rich Stephen S SS   Smith Jennifer A JA   Taylor Kent D KD   Taub Margaret A MA   Vasan Ramachandran S RS   Weeks Daniel E DE   Wilson James G JG   Yanek Lisa R LR   Zhao Wei W   Rotter Jerome I JI   Willer Cristen J CJ   Natarajan Pradeep P   Peloso Gina M GM   Lin Xihong X  

Nature methods 20221027 12


Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding  ...[more]

Similar Datasets

| S-EPMC10634938 | biostudies-literature
| S-EPMC3169821 | biostudies-literature
| S-EPMC6507043 | biostudies-literature
| S-EPMC7483769 | biostudies-literature
| S-EPMC4292528 | biostudies-literature
| S-EPMC7056612 | biostudies-literature
| S-EPMC6185909 | biostudies-literature
| S-EPMC11906349 | biostudies-literature
| S-EPMC4580299 | biostudies-literature
| S-EPMC10629770 | biostudies-literature