Unknown

Dataset Information

0

Mathematical modeling and biochemical analysis support partially ordered calmodulin-myosin light chain kinase binding.


ABSTRACT: Activation of myosin light chain kinase (MLCK) by calcium ions (Ca2+) and calmodulin (CaM) plays an important role in numerous cellular functions including vascular smooth muscle contraction and cellular motility. Despite extensive biochemical analysis, aspects of the mechanism of activation remain controversial, and competing theoretical models have been proposed for the binding of Ca2+ and CaM to MLCK. The models are analytically solvable for an equilibrium steady state and give rise to distinct predictions that hold regardless of the numerical values assigned to parameters. These predictions form the basis of a recently proposed, multi-part experimental strategy for model discrimination. Here we implement this strategy by measuring CaM-MLCK binding using an in vitro FRET system. Interpretation of binding data in light of the mathematical models suggests a partially ordered mechanism for binding CaM to MLCK. Complementary data collected using orthogonal approaches that assess CaM-MLCK binding further support this conclusion.

SUBMITTER: MacEwen MJS 

PROVIDER: S-EPMC10031086 | biostudies-literature | 2023 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mathematical modeling and biochemical analysis support partially ordered calmodulin-myosin light chain kinase binding.

MacEwen Melissa J S MJS   Rusnac Domnita-Valeria DV   Ermias Henok H   Locke Timothy M TM   Gizinski Hayden E HE   Dexter Joseph P JP   Sancak Yasemin Y  

iScience 20230204 4


Activation of myosin light chain kinase (MLCK) by calcium ions (Ca<sup>2+</sup>) and calmodulin (CaM) plays an important role in numerous cellular functions including vascular smooth muscle contraction and cellular motility. Despite extensive biochemical analysis, aspects of the mechanism of activation remain controversial, and competing theoretical models have been proposed for the binding of Ca<sup>2+</sup> and CaM to MLCK. The models are analytically solvable for an equilibrium steady state a  ...[more]

Similar Datasets

| S-EPMC4941474 | biostudies-literature
| S-EPMC2836765 | biostudies-literature
| S-EPMC39189 | biostudies-other
| S-EPMC3263943 | biostudies-literature
| S-EPMC9929473 | biostudies-literature
| S-EPMC3278446 | biostudies-literature
| S-EPMC2144740 | biostudies-literature
| S-EPMC1186598 | biostudies-other
| S-EPMC3242870 | biostudies-literature
| S-EPMC2864612 | biostudies-literature