Ontology highlight
ABSTRACT: Background
Human accelerated regions (HARs) are short conserved genomic sequences that have acquired significantly more nucleotide substitutions than expected in the human lineage after divergence from chimpanzees. The fast evolution of HARs may reflect their roles in the origin of human-specific traits. A recent study has reported positively-selected single nucleotide variants (SNVs) within brain-exclusive human accelerated enhancers (BE-HAEs) hs1210 (forebrain), hs563 (hindbrain) and hs304 (midbrain/forebrain). By including data from archaic hominins, these SNVs were shown to be Homo sapiens-specific, residing within transcriptional factors binding sites (TFBSs) for SOX2 (hs1210), RUNX1/3 (hs563), and FOS/JUND (hs304). Although these findings suggest that the predicted modifications in TFBSs may have some role in present-day brain structure, work is required to verify the extent to which these changes translate into functional variation.Results
To start to fill this gap, we investigate the SOX2 SNV, with both forebrain expression and strong signal of positive selection in humans. We demonstrate that the HMG box of SOX2 binds in vitro with Homo sapiens-specific derived A-allele and ancestral T-allele carrying DNA sites in BE-HAE hs1210. Molecular docking and simulation analysis indicated highly favourable binding of HMG box with derived A-allele containing DNA site when compared to site carrying ancestral T-allele.Conclusion
These results suggest that adoptive changes in TF affinity within BE-HAE hs1210 and other HAR enhancers in the evolutionary history of Homo sapiens might. have brought about changes in gene expression patterns and have functional consequences on forebrain formation and evolution.Methods
The present study employ electrophoretic mobility shift assays (EMSA) and molecular docking and molecular dynamics simulations approaches.
SUBMITTER: Khatoon H
PROVIDER: S-EPMC10053400 | biostudies-literature | 2023 Mar
REPOSITORIES: biostudies-literature
Khatoon Hizran H Raza Rabail Zehra RZ Saleem Shoaib S Batool Fatima F Arshad Saba S Abrar Muhammad M Ali Shahid S Hussain Irfan I Shubin Neil H NH Abbasi Amir Ali AA
BMC molecular and cell biology 20230329 1
<h4>Background</h4>Human accelerated regions (HARs) are short conserved genomic sequences that have acquired significantly more nucleotide substitutions than expected in the human lineage after divergence from chimpanzees. The fast evolution of HARs may reflect their roles in the origin of human-specific traits. A recent study has reported positively-selected single nucleotide variants (SNVs) within brain-exclusive human accelerated enhancers (BE-HAEs) hs1210 (forebrain), hs563 (hindbrain) and h ...[more]