Unknown

Dataset Information

0

Solution-Processed Cu2S Nanostructures for Solar Hydrogen Production.


ABSTRACT: Cu2S is a promising solar energy conversion material due to its suitable optical properties, high elemental earth abundance, and nontoxicity. In addition to the challenge of multiple stable secondary phases, the short minority carrier diffusion length poses an obstacle to its practical application. This work addresses the issue by synthesizing nanostructured Cu2S thin films, which enables increased charge carrier collection. A simple solution-processing method involving the preparation of CuCl and CuCl2 molecular inks in a thiol-amine solvent mixture followed by spin coating and low-temperature annealing was used to obtain phase-pure nanostructured (nanoplate and nanoparticle) Cu2S thin films. The photocathode based on the nanoplate Cu2S (FTO/Au/Cu2S/CdS/TiO2/RuO x ) reveals enhanced charge carrier collection and improved photoelectrochemical water-splitting performance compared to the photocathode based on the non-nanostructured Cu2S thin film reported previously. A photocurrent density of 3.0 mA cm-2 at -0.2 versus a reversible hydrogen electrode (V RHE) with only 100 nm thickness of a nanoplate Cu2S layer and an onset potential of 0.43 V RHE were obtained. This work provides a simple, cost-effective, and high-throughput method to prepare phase-pure nanostructured Cu2S thin films for scalable solar hydrogen production.

SUBMITTER: Zhang X 

PROVIDER: S-EPMC10061676 | biostudies-literature | 2023 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Solution-Processed Cu<sub>2</sub>S Nanostructures for Solar Hydrogen Production.

Zhang Xi X   Pollitt Stephan S   Jung Gihun G   Niu Wenzhe W   Adams Pardis P   Bühler Jan J   Grundmann Nora S NS   Erni Rolf R   Nachtegaal Maarten M   Ha Neul N   Jung Jisu J   Shin Byungha B   Yang Wooseok W   Tilley S David SD  

Chemistry of materials : a publication of the American Chemical Society 20230308 6


Cu<sub>2</sub>S is a promising solar energy conversion material due to its suitable optical properties, high elemental earth abundance, and nontoxicity. In addition to the challenge of multiple stable secondary phases, the short minority carrier diffusion length poses an obstacle to its practical application. This work addresses the issue by synthesizing nanostructured Cu<sub>2</sub>S thin films, which enables increased charge carrier collection. A simple solution-processing method involving the  ...[more]

Similar Datasets

| S-EPMC6435794 | biostudies-literature
| S-EPMC10821043 | biostudies-literature
| S-EPMC5062431 | biostudies-literature
| S-EPMC9079141 | biostudies-literature
| S-EPMC10414019 | biostudies-literature
| S-EPMC11247423 | biostudies-literature
| S-EPMC6645655 | biostudies-literature
| S-EPMC5459815 | biostudies-literature
| S-EPMC5115364 | biostudies-literature
| S-EPMC5980086 | biostudies-literature