Project description:Flower traits, such as flower size or color changes, can act as honest signals indicating greater rewards such as nectar; however, nothing is known about shelter-rewarding systems. Large flowers of Royal irises offer overnight shelter as a reward to Eucera bees. A black patch might signal the entrance to the tunnel (shelter) and, together with the flower size, these might act as honest signals. We hypothesize that larger flowers and black patches indicate larger tunnels, and larger tunnels will increase pollinator visits, enhancing the plants' reproductive success. We measured seven species in a controlled environment and two species from three natural populations varying in flower size. Fruit and seed sets were assessed in these natural populations. We found a positive correlation between the flower, patch size, and tunnel volume, suggesting that the flowers and patch size act as honest signals, both under controlled conditions and in the wild. However, in natural populations, this positive relationship and its effect on fitness was population-specific. Flower size increased the fitness in YER I. petrana, and interactions between flower/patch size and tunnel size increased the fitness in YER and I. atropurpurea NET populations. This suggests that the honesty of the signal is positively selected in these two populations. This study supports the hypothesis that pollinator-mediated selection leads to the honest signaling of flower advertisement.
Project description:BACKGROUND AND AIMS:Flower colour polymorphism in plants has been used as a classic model for understanding the importance of neutral processes vs. natural selection in population differentiation. However, current explanations for the maintenance of flower colour polymorphism mainly rely on balancing selection, while neutral processes have seldom been championed. Iris lutescens (Iridaceae) is a widespread species in the northern Mediterranean basin, which shows a stable and striking purple-yellow flower colour polymorphism. To evaluate the roles of neutral processes in the spatial variation for flower colour in this species, patterns of neutral genetic variation across its distribution range were quantified, and phenotypic differentiation was compared with neutral genetic differentiation. METHODS:Genetic diversity levels and population genetic structure were investigated through the genotyping of a collection of 1120 individuals in 41 populations ranging from Spain to France, using a set of eight newly developed microsatellite markers. In addition, phenotypic differentiation for flower colour was also quantified by counting colour morph frequency in each population, and measuring the reflectance spectra of sampled individuals. KEY RESULTS:Populations in Spain present a sharp colour transition from solely purple to solely yellow. The results provide evidence that genetic drift through limited gene flow is important in the evolution of monomorphic populations. In contrast, most populations in France are polymorphic with both phenotypes, and the colour frequencies vary geographically without any spatial gradients observed. A pattern of isolation by distance is detected in France, and gene flow between adjacent populations seems to be an important factor maintaining populations polymorphic. CONCLUSIONS:Overall, neutral processes contribute to patterns of spatial variation for flower colour in I. lutescens, but it cannot be excluded that natural selection is also operating. An interaction between neutral processes and natural selection is suggested to explain the spatial variation for flower colour in I. lutescens.
Project description:Floral color plays a key role as visual signaling and is therefore of great importance in shaping plant-pollinator interactions. Iris (Iridaceae), a genus comprising over 300 species and named after the Greek goddess of the colorful rainbow, is famous for its dazzling palette of flower colors and patterns, which vary considerably both within and among species. Despite the large variation of flower color in Iris, little is known about the phylogenetic and ecological contexts of floral color. Here, we seek to resolve the evolution of flower color in the genus Iris in a macroevolutionary framework. We used a phylogenetic analysis to reconstruct the ancestral state of flower color and other pollination-related traits (e.g., the presence of nectar and mating system), and also tracked the evolution of color variation. We further explored weather floral trait transitions are better explained by environmental or pollinator-mediated selection. Our study revealed that the most recent common ancestor likely had monomorphic, purple flowers, with a crest and a spot on the fall. The flowers were likely insect-pollinated, nectar-rewarding, and self-compatible. The diversity of floral traits we see in modern irises, likely represents a trade-off between conflicting selection pressures. Whether shifts in these flower traits result from abiotic or biotic selective agents or are maintained by neutral processes without any selection remains an open question. Our analysis serves as a starting point for future work exploring the genetic and physiological mechanisms controlling flower coloration in the most color-diverse genus Iris.
Project description:Background and aimsThe pollinator-mediated stabilizing selection hypothesis suggests that the specialized pollination system of zygomorphic flowers might cause stabilizing selection, reducing their flower size variation compared with actinomorphic flowers. However, the degree of ecological generalization and of dependence on pollinators varies greatly among species of both flower symmetry types and this may also affect flower size variation.MethodsData on 43 species from two contrasting communities (one alpine and one lowland community) were used to test the relationships and interactions between flower size phenotypic variation, floral symmetry, ecological pollination generalization and species' dependence on pollinators.Key resultsContrary to what was expected, higher flower size variation was found in zygomorphic than in actinomorphic species in the lowland community, and no difference in flower size variation was found between symmetry types in the alpine community. The relationship between floral symmetry and flower size variation depended on ecological generalization and species' dependence on pollinators, although the influence of ecological generalization was only detected in the alpine community. Zygomorphic species that were highly dependent on pollinators and that were ecologically specialized were less variable in flower size than ecologically generalist and selfing zygomorphic species, supporting the pollinator-mediated stabilizing selection hypothesis. However, these relationships were not found in actinomorphic species, probably because they are not dependent on any particular pollinator for efficient pollination and therefore their flower size always shows moderate levels of variation.ConclusionsThe study suggests that the relationship between flower size variation and floral symmetry may be influenced by population-dependent factors, such as ecological generalization and species' dependence on pollinators.
Project description:Flower color plays a crucial role in attracting pollinators and facilitating environmental adaptation. Investigating the causes of flower color polymorphism and understanding their potential effects on both ecology and genetics can enhance our understanding of flower color polymorphism in wild plant. In this study, we examined the differences of potential male and female fitness between purple- and yellow- flower individuals in Iris potaninii on the Qinghai-Tibet Plateau, and screened key genes and positively selective genes involved in flower color change. Our results showed that yellow flower exhibited a higher pollen-to-ovule ratio. Yellow flowers were derived from purple flowers due to the loss of anthocyanins, and F3H could be an essential gene affecting flower color variation though expression regulation and sequence polymorphism in this species. Furthermore, our findings suggest that genes positively selected in yellow-flowered I. potaninii might be involved in nucleotide excision repair and plant-pathogen interactions. These results suggest that F3H induces the flower color variation of Iris potaninii, and the subsequent ecological and additive positive selection on yellow flowers may further enhance plant adaptations to alpine environments.
Project description:Reduced dispersal of large seeds into degraded areas is one of the major factors limiting rain forest regeneration, as many seed dispersers capable of transporting large seeds avoid these sites with a limited forest cover. However, the small size of tamarins allows them to use small trees, and hence to disperse seeds into young secondary forests. Seasonal variations in diet and home range use might modify their contribution to forest regeneration through an impact on the seed rain. For a 2-yr period, we followed a mixed-species group of tamarins in Peru to determine how their role as seed dispersers in a 9-yr-old secondary-growth forest varied across seasons. These tamarins dispersed small to large seeds of 166 tree species, 63 of which were into a degraded area. Tamarins' efficiency in dispersing seeds from primary to secondary forest varied across seasons. During the late wet season, high dietary diversity and long forays in secondary forest allowed them to disperse large seeds involved in later stages of regeneration. This occurred precisely when tamarins spent a more equal amount of time eating a high diversity of fruit species in primary forest and pioneer species in secondary forest. We hypothesized that well-balanced fruit availability induced the movement of seed dispersers between these 2 habitats. The noteworthy number of large-seeded plant species dispersed by such small primates suggests that tamarins play an important, but previously neglected, role in the regeneration and maintenance of forest structure. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10764-010-9413-7) contains supplementary material, which is available to authorized users.
Project description:The observed variation in the body size responses of endotherms to climate change may be explained by two hypotheses: the size increases with climate variability (the starvation resistance hypothesis) and the size shrinks as mean temperatures rise (the heat exchange hypothesis). Across 82 Australian passerine species over 50 years, shrinking was associated with annual mean temperature rise exceeding 0.012°C driven by rising winter temperatures for arid and temperate zone species. We propose the warming winters hypothesis to explain this response. However, where average summer temperatures exceeded 34°C, species experiencing annual rise over 0.0116°C tended towards increasing size. Results suggest a broad-scale physiological response to changing climate, with size trends probably reflecting the relative strength of selection pressures across a climatic regime. Critically, a given amount of temperature change will have varying effects on phenotype depending on the season in which it occurs, masking the generality of size patterns associated with temperature change. Rather than phenotypic plasticity, and assuming body size is heritable, results suggest selective loss or gain of particular phenotypes could generate evolutionary change but may be difficult to detect with current warming rates.
Project description:IntroductionThe aim of this paper was to further develop a previously described finite element model which equates clinical iris billowing movements with mechanical buckling behaviour, simulating floppy iris syndrome. We wished to evaluate the impact of pupil dilation and mechanical devices on normal iris and floppy iris models.MethodsTheoretical mathematical modelling and computer simulations were used to assess billowing/buckling patterns of the iris under loading pressures for the undilated and dilated normal iris, the undilated and dilated floppy iris, and additionally with a mechanical ring device.ResultsFor the normal iris, billowing/buckling occurred at a critical pressure of 19.92 mmHg for 5 mm pupil size, which increased to 28.00 mmHg (40.56%) with a 7 mm pupil. The Malyugin ring device significantly increased critical initiating buckling pressures in the normal iris scenario, to 34.58 mmHg (73.59%) for 7 mm ring with boundary conditions I (BC I) and 34.51 mmHg (73.24%) with BC II. For the most floppy iris modelling (40% degradation), initiating buckling value was 18.04 mmHg (-9.44%), which increased to 28.39 mmHg (42.52%) with the 7 mm ring. These results were much greater than for normal undilated iris without restrictive mechanical expansion (19.92 mmHg).ConclusionThis simulation demonstrates that pupil expansion devices inhibit iris billowing even in the setting of floppy iris syndrome. Our work also provides a model to further investigate the impact of pupil size or pharmacological interventions on anterior segment conditions affected by iris position.
Project description:Iris japonica Thunberg is one of the horticultural species belonging to the Iris genus and Iridaceae family. Previous studies have revealed its hepatoprotective activity and ornamental values. However, little genetic and genomic information about this species is available. Here, to decipher the chloroplast genome and reveal its evolutionary characteristics, we sequenced, de novo assembled, and comprehensively analyzed the chloroplast genome of I. japonica. The genome was 152,453 bp in length and displayed a circular structure with a large single-copy region, a small single-copy region, and two inverted repeat regions. It contained 131 genes, including 85 protein-coding genes, eight ribosomal RNA genes, and 38 transfer RNA genes. We also identified 23 microsatellite repeat sequences, 34 tandem repeat sequences, and 60 dispersed repeat sequences in the chloroplast genome of I. japonica. Sequence divergence analyses of the chloroplast genomes of 20 Iris species revealed that the top four most highly variable regions were ndhC-trnV-UAC, rpl22-rps19, rps16-trnQ-UUG, and trnG-UCC-trnR-UCU. Phylogenetic analysis showed that I. japonica was most closely related to I. tectorum. This study reported a new chloroplast genome of I. japonica and performed comparative analyses of 20 Iris chloroplast genomes. The results would facilitate the evolutionary research and development of molecular markers for Iris species.
Project description:Urbanization is a leading threat to biodiversity, but scientifically informed management of urban ecosystems can mitigate negative impacts. For wild bees, which are declining worldwide, careful consideration of flower choice in public and private green spaces could help preserve their diversity. While floral density and species richness are both linked to wild bee diversity, the mechanisms underlying these relationships are not fully understood. Here, we tested two hypotheses relating the influence of floral trait composition to bee species richness, which we have termed the within-trait diversity and optimal floral trait hypotheses. Specifically, we assessed whether variation in bee richness relates to variation in the weighted variance (trait diversity) and mean (optimal trait) of floral traits observed in urban green spaces across the city of Montreal, Canada. Our analyses focused on two floral traits relating to pollinator feeding success: nectar sugar concentration and corolla length. After accounting for variation in floral density among sites, bee richness was positively related to community-weighted variance in corolla length, supporting the within-trait diversity hypothesis. These findings suggest that management practices that increase the diversity of flower morphologies in urban green spaces can promote the persistence of wild bee communities in cities.