Unknown

Dataset Information

0

Subtle tuning of nanodefects actuates highly efficient electrocatalytic oxidation.


ABSTRACT: Achieving controllable fine-tuning of defects in catalysts at the atomic level has become a zealous pursuit in catalysis-related fields. However, the generation of defects is quite random, and their flexible manipulation lacks theoretical basis. Herein, we present a facile and highly controllable thermal tuning strategy that enables fine control of nanodefects via subtle manipulation of atomic/lattice arrangements in electrocatalysts. Such thermal tuning endows common carbon materials with record high efficiency in electrocatalytic degradation of pollutants. Systematic characterization and calculations demonstrate that an optimal thermal tuning can bring about enhanced electrocatalytic efficiency by manipulating the N-centered annulation-volatilization reactions and C-based sp3/sp2 configuration alteration. Benefiting from this tuning strategy, the optimized electrocatalytic anodic membrane successfully achieves >99% pollutant (propranolol) degradation during a flow-through (~2.5 s for contact time), high-flux (424.5 L m-2 h-1), and long-term (>720 min) electrocatalytic filtration test at a very low energy consumption (0.029 ± 0.010 kWh m-3 order-1). Our findings highlight a controllable preparation approach of catalysts while also elucidating the molecular level mechanisms involved.

SUBMITTER: Gao Y 

PROVIDER: S-EPMC10097648 | biostudies-literature | 2023 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Subtle tuning of nanodefects actuates highly efficient electrocatalytic oxidation.

Gao Yifan Y   Liang Shuai S   Liu Biming B   Jiang Chengxu C   Xu Chenyang C   Zhang Xiaoyuan X   Liang Peng P   Elimelech Menachem M   Huang Xia X  

Nature communications 20230412 1


Achieving controllable fine-tuning of defects in catalysts at the atomic level has become a zealous pursuit in catalysis-related fields. However, the generation of defects is quite random, and their flexible manipulation lacks theoretical basis. Herein, we present a facile and highly controllable thermal tuning strategy that enables fine control of nanodefects via subtle manipulation of atomic/lattice arrangements in electrocatalysts. Such thermal tuning endows common carbon materials with recor  ...[more]

Similar Datasets

| S-EPMC11686141 | biostudies-literature
| S-EPMC11339012 | biostudies-literature
| S-EPMC6124914 | biostudies-literature
| S-EPMC5802274 | biostudies-literature
| S-EPMC11468780 | biostudies-literature
| S-EPMC9706555 | biostudies-literature
| S-EPMC5643308 | biostudies-literature
| S-EPMC4579784 | biostudies-literature
| S-EPMC10232861 | biostudies-literature
| S-EPMC8162463 | biostudies-literature