Project description:Single-cell RNA-sequencing reveals a shift from focused IFN alpha-driven signals in COVID-19 ICU patients who survive to broad pro-inflammatory responses in fatal COVID-19 – a feature not observed in severe influenza. We conclude that fatal COVID-19 infection is driven by uncoordinated inflammatory responses that drive a hierarchy of T cell activation, elements of which can serve as prognostic indicators and potential targets for immune intervention.
Project description:Background: Outcomes in patients with severe SARS-CoV-2 infection (COVID-19) are conditioned by viral control and regulation of inflammation. Variants in IFIH1, a gene coding the cytoplasmatic RNA sensor MDA5, regulate the response to viral infections. Methods: Patients admitted to an intensive care unit (ICU) with documented COVID-19 were prospectively included and IFIH1 rs1990760 genotypes determined. Peripheral blood gene expression, cell populations and immune mediators were measured during the first day after ICU admission before steroid therapy. Peripheral blood mononuclear cells from healthy volunteers were exposed ex-vivo to an MDA5 agonist and dexamethasone, and changes in gene expression assessed. ICU discharge and hospital death were modelled using rs1990760 variants and dexamethasone therapy as factors. Findings: 237 patients were studied. Patients with the IFIH1 rs1990760 TT variant showed a decrease in expression of inflammation-related pathways, an anti-inflammatory cell profile and a decrease in pro-inflammatory mediators. Cells with TT variant exposed to an MDA5 agonist ex-vivo showed an increase in FOXO3 and IL6 when dexamethasone was added. All patients with the TT variant not treated with steroids (n=14) survived their ICU stay (HR 2.49 95% confidence interval 1.29 – 4.79). Dexamethasone therapy in this subgroup (N=50) delayed ICU discharge and increased hospital mortality (HR 2.19, 95% confidence interval 1.01 – 4.87) and serum IL-6 concentrations. Interpretation: COVID-19 ICU patients with the IFIH1 rs1990760 TT variant show an ameliorated inflammatory response that results in better outcomes than CC/CT variants. Dexamethasone can reverse this anti-inflammatory phenotype, worsening the outcome. Funding: Instituto de Salud Carlos III.
Project description:Infections caused by SARS-CoV-2 may cause a severe disease, termed COVID-19, with significant mortality. Host responses to this infection, mainly in terms of systemic inflammation, have emerged as key pathogenetic mechanisms, and their modulation is the only therapeutic strategy that has shown a mortality benefit. Herein, we used peripheral blood transcriptomes of critically-ill COVID-19 patients obtained at admission in an Intensive Care Unit, to identify two clusters that, in spite of no major clinical differences, have different gene expression profiles that reveal different underlying pathogenetic mechanisms and ultimately have different ICU outcome. A transcriptomic signature was used to identify these clusters in an external validation cohort, yielding a similar result. These results illustrate the potential of transcriptomic profiles to identify patient endotypes and point to relevant pathogenetic mechanisms in COVID-19.
Project description:Total plasma IgA glycosylation was compared between healthy volunteers and volunteers suffering fromo infections with either the influenza A virus or the severe acute respiratory syndrome corona virus 2. Data from functional assays of the same plasma samples, such as neutrophil extracellular trap formation is also available.
Project description:Infections caused by SARS-CoV-2 may cause a severe disease, termed COVID-19, with significant mortality. Host responses to this infection, mainly in terms of systemic inflammation, have emerged as key pathogenetic mechanisms, and their modulation is the only therapeutic strategy that has shown a mortality benefit. Herein, we used peripheral blood transcriptomes of critically-ill COVID-19 patients obtained at admission in an Intensive Care Unit, to identify two clusters that, in spite of no major clinical differences, have different gene expression profiles that reveal different underlying pathogenetic mechanisms and ultimately have different ICU outcome. A transcriptomic signature was used to identify these clusters in an external validation cohort, yielding a similar result. These results illustrate the potential of transcriptomic profiles to identify patient endotypes and point to relevant pathogenetic mechanisms in COVID-19.
Project description:Infections caused by SARS-CoV-2 may cause a severe disease, termed COVID-19, with significant mortality. Host responses to this infection, mainly in terms of systemic inflammation, have emerged as key pathogenetic mechanisms, and their modulation is the only therapeutic strategy that has shown a mortality benefit. Herein, we used peripheral blood transcriptomes of critically-ill COVID-19 patients obtained at admission in an Intensive Care Unit, to identify two clusters that, in spite of no major clinical differences, have different gene expression profiles that reveal different underlying pathogenetic mechanisms and ultimately have different ICU outcome. A transcriptomic signature was used to identify these clusters in an external validation cohort, yielding a similar result. These results illustrate the potential of transcriptomic profiles to identify patient endotypes and point to relevant pathogenetic mechanisms in COVID-19.
Project description:BackgroundA greater understanding of disease heterogeneity may facilitate precision medicine for coronavirus disease 2019 (COVID-19). Previous work identified four distinct clinical phenotypes associated with outcome and treatment responses in non-COVID-19 sepsis patients, but it is unknown if and how these phenotypes are recapitulated in COVID-19 sepsis patients.MethodsWe applied the four non-COVID-19 sepsis phenotypes to a total of 52,274 critically ill patients, comprising two cohorts of COVID-19 sepsis patients (admitted before and after the introduction of dexamethasone as standard treatment) and three non-COVID-19 sepsis cohorts (non-COVID-19 viral pneumonia sepsis, bacterial pneumonia sepsis, and bacterial sepsis of non-pulmonary origin). Differences in proportions of phenotypes and their associated mortality were determined across these cohorts.ResultsPhenotype distribution was highly similar between COVID-19 and non-COVID-19 viral pneumonia sepsis cohorts, whereas the proportion of patients with the δ-phenotype was greater in both bacterial sepsis cohorts compared to the viral sepsis cohorts. The introduction of dexamethasone treatment was associated with an increased proportion of patients with the δ-phenotype (6% vs. 11% in the pre- and post-dexamethasone COVID-19 cohorts, respectively, p < 0.001). Across the cohorts, the α-phenotype was associated with the most favorable outcome, while the δ-phenotype was associated with the highest mortality. Survival of the δ-phenotype was markedly higher following the introduction of dexamethasone (60% vs 41%, p < 0.001), whereas no relevant differences in survival were observed for the other phenotypes among COVID-19 patients.ConclusionsClassification of critically ill COVID-19 patients into clinical phenotypes may aid prognostication, prediction of treatment efficacy, and facilitation of personalized medicine.
Project description:BackgroundThe emergence of SARS-CoV-2 variants led to subsequent waves of COVID-19 worldwide. In many countries, the second wave of COVID-19 was marked by record deaths, raising the concern that variants associated with that wave might be more deadly. Our aim was to compare outcomes of critically-ill patients of the first two waves of COVID-19.MethodsThis retrospective cohort included critically-ill patients admitted between March-June 2020 and April-July 2021 in the largest academic hospital in Brazil, which has free-access universal health care system. We compared admission characteristics and hospital outcomes. The main outcome was 60-day survival and we built multivariable Cox model based on a conceptual causal diagram in the format of directed acyclic graph (DAG).ResultsWe included 1583 patients (1315 in the first and 268 in the second wave). Patients in the second wave were younger, had lower severity scores, used prone and non-invasive ventilatory support more often, and fewer patients required mechanical ventilation (70% vs 80%, p<0.001), vasopressors (60 vs 74%, p<0.001), and dialysis (22% vs 37%, p<0.001). Survival was higher in the second wave (HR 0.61, 95%CI 0.50-0.76). In the multivariable model, admission during the second wave, adjusted for age, SAPS3 and vaccination, was not associated with survival (aHR 0.85, 95%CI 0.65-1.12).ConclusionsIn this cohort study, patients with COVID-19 admitted to the ICU in the second wave were younger and had better prognostic scores. Adjusted survival was similar in the two waves, contrasting with record number of hospitalizations, daily deaths and health system collapse seen across the country in the second wave. Our findings suggest that the combination of the burden of severe cases and factors such as resource allocation and health disparities may have had an impact in the excess mortality found in many countries in the second wave.
Project description:ObjectivesCoronavirus disease 19 (COVID-19) is a major cause of hospital admission and represents a challenge for patient management during intensive care unit (ICU) stay. We aimed to describe the clinical course and outcomes of COVID-19 pneumonia in critically ill patients.MethodsWe performed a systematic search of peer-reviewed publications in MEDLINE, EMBASE and the Cochrane Library up to 15th August 2020. Preprints and reports were also included if they met the inclusion criteria. Study eligibility criteria were full-text prospective, retrospective or registry-based publications describing outcomes in patients admitted to the ICU for COVID-19, using a validated test. Participants were critically ill patients admitted in the ICU with COVID-19 infection.ResultsFrom 32 articles included, a total of 69 093 patients were admitted to the ICU and were evaluated. Most patients included in the studies were male (76 165/128 168, 59%, 26 studies) and the mean patient age was 56 (95%CI 48.5-59.8) years. Studies described high ICU mortality (21 145/65 383, 32.3%, 15 studies). The median length of ICU stay was 9.0 (95%CI 6.5-11.2) days, described in five studies. More than half the patients admitted to the ICU required mechanical ventilation (31 213/53 465, 58%, 23 studies) and among them mortality was very high (27 972/47 632, 59%, six studies). The duration of mechanical ventilation was 8.4 (95%CI 1.6-13.7) days. The main interventions described were the use of non-invasive ventilation, extracorporeal membrane oxygenation, renal replacement therapy and vasopressors.ConclusionsThis systematic review, including approximately 69 000 ICU patients, demonstrates that COVID-19 infection in critically ill patients is associated with great need for life-sustaining interventions, high mortality, and prolonged length of ICU stay.