Project description:As only symptomatic treatments are now available for Alzheimer's disease (AD), safe and effective mechanism-based therapies remain a great unmet need for patients with this neurodegenerative disease. Although gamma-secretase and BACE1 [beta-site beta-amyloid (Abeta) precursor protein (APP) cleaving enzyme 1] are well-recognized therapeutic targets for AD, untoward side effects associated with strong inhibition or reductions in amounts of these aspartyl proteases have raised concerns regarding their therapeutic potential. Although moderate decreases of either gamma-secretase or BACE1 are not associated with mechanism-based toxicities, they provide only modest benefits in reducing Abeta in the brains of APPswe/PS1DeltaE9 mice. Because the processing of APP to generate Abeta requires both gamma-secretase and BACE1, it is possible that moderate reductions of both enzymes would provide additive and significant protection against Abeta amyloidosis. Here, we test this hypothesis and assess the value of this novel anti-amyloid combination therapy in mutant mice. We demonstrate that genetic reductions of both BACE1 and gamma-secretase additively attenuate the amyloid burden and ameliorate cognitive deficits occurring in aged APPswe/PS1DeltaE9 animals. No evidence of mechanism-based toxicities was associated with such decreases in amounts of both enzymes. Thus, we propose that targeting both gamma-secretase and BACE1 may be an effective and safe treatment strategy for AD.
Project description:Alzheimer's disease (AD) is the most common neurodegenerative disease. Biomarkers have demonstrated that AD pathology exists over the disease continuum from a stage preceding symptoms over 15-25 years to the progressively more impaired symptomatic states, mild cognitive impairment (MCI), and dementia. Biomarkers include: amyloid (Aß), phosphorylated tau, and neurodegeneration. The plasma assays for Aß and tau show great promise for clinical and research use. This review has aimed not only to present the ATN diagnostic classification and the preclinical AD concepts in addressing some possibilities of cognitive assessment instruments, but also to briefly summarize the main anti-amyloid monoclonal antibodies studied in clinical trials. In addition, this paper presents a critical analysis by experts in cognitive neurology while addressing the question as to whether we are prepared for the anti-amyloid therapy era or not.
Project description:With the recent approval by the FDA of the first disease-modifying drug for Alzheimer's Disease (AD), personalized medicine will be increasingly important for appropriate management and counseling of patients with AD and those at risk. The growing availability of clinical biomarker data and data-driven computational modeling techniques provide an opportunity for new approaches to individualized AD therapeutic planning. In this paper, we develop a new mathematical model, based on AD cognitive, cerebrospinal fluid (CSF) and MRI biomarkers, to provide a personalized optimal treatment plan for individuals. This model is parameterized by biomarker data from the AD Neuroimaging Initiative (ADNI) cohort, a large multi-institutional database monitoring the natural history of subjects with AD and mild cognitive impairment (MCI). Optimal control theory is used to incorporate time-varying treatment controls and side-effects into the model, based on recent clinical trial data, to provide a personalized treatment regimen with anti-amyloid-beta therapy. In-silico treatment studies were conducted on the approved treatment, aducanumab, as well as on another promising anti-amyloid-beta therapy under evaluation, donanemab. Clinical trial simulations were conducted over both short-term (78 weeks) and long-term (10 years) periods with low-dose (6 mg/kg) and high-dose (10 mg/kg) regimens for aducanumab, and a single-dose regimen (1400 mg) for donanemab. Results confirm those of actual clinical trials showing a large and sustained effect of both aducanumab and donanemab on amyloid beta clearance. The effect on slowing cognitive decline was modest for both treatments, but greater for donanemab. This optimal treatment computational modeling framework can be applied to other single and combination treatments for both prediction and optimization, as well as incorporate new clinical trial data as it becomes available.
Project description:Recent successive approval of anti-amyloid-β (Aβ) monoclonal antibodies as disease-modifying therapies against Alzheimer's disease (AD) has raised great confidence in the development of anti-AD therapies; however, the current therapies still face the dilemma of significant adverse reactions and limited effects. In this review, we summarized the therapeutic characteristics of the approved anti-Aβ immunotherapies and dialectically analyzed the gains and losses from clinical trials. The review further proposed the reasonable selection of animal models in preclinical studies from the perspective of different animal models of Aβ deposition and deals in-depth with the recent advances of exploring preclinical nanomedical application in Aβ targeted therapy, aiming to provide a reliable systematic summary for the development of novel anti-Aβ therapies. Collectively, this review comprehensively dissects the pioneering work of Aβ-targeted therapies and proposed perspective insight into AD-modified therapies.
Project description:The introduction of anti-amyloid therapies for Alzheimer's disease (AD), such as lecanemab (Lequembi®), which was recently approved in Korea, necessitates careful monitoring for amyloid-related imaging abnormalities (ARIA) using brain MRI. To optimize ARIA monitoring in Korean clinical settings, the Korean Society of Neuroradiology (KSNR) and the Age and Neurodegeneration Imaging (ANDI) Study Group proposed MRI protocol recommendations on essential MR sequences, MRI acquisition parameters, timing and condition of MRI examinations, and essential details to provide a scientific basis for maximizing the safety and efficacy of AD treatment. A customized, standardized MRI protocol focusing on Korea's healthcare environment can improve ARIA management and ensure patient safety through early detection of potential anti-amyloid therapy side effects, thereby enhancing treatment quality.
Project description:For many years, the failure of randomized controlled trials (RCTs) has prevented patients with systemic lupus erythematosus (SLE) from benefiting from biological drugs that have proved to be effective in other rheumatological diseases. Only two biologics are approved for SLE, however they can only be administered to a restricted proportion of patients. Recently, several phase II RCTs have evaluated the efficacy and safety of new biologics in extra-renal SLE and lupus nephritis. Six drug trials have reported encouraging results, with an improvement in multiple clinical and serological outcome measures. The possibility of combining B-cell depletion and anti-BLyS treatment has also been successfully explored.
Project description:Two monoclonal antibodies (mAbs), aducanumab and lecanemab, have received accelerated approval from the US FDA for initiation of treatment in early Alzheimer's disease patients who have proven β-amyloid pathology (Aβ). One of these, lecanemab, has subsequently received full approval and other monoclonal antibodies are poised for positive review and approval. Anti-amyloid mAbs share the feature of producing a marked reduction in total brain Aβ revealed by amyloid positron emission tomography. Trials associated with slowing of cognitive decline have achieved a reduction in measurable plaque Aβ in the range of 15-25 centiloids; trials of agents that did not reach this threshold were not associated with cognitive benefit. mAbs have differences in terms of titration schedules, MRI monitoring schedules for amyloid-related imaging abnormalities (ARIA), and continuing versus interrupted therapy. The approximate 30% slowing of decline observed with mAbs is clinically meaningful in terms of extended cognitive integrity and delay of onset of the more severe dementia phases of Alzheimer's disease. Approval of these agents initiates a new era in Alzheimer's disease therapeutics with disease-modifying properties. Further advances are needed, i.e. greater efficacy, improved safety, enhanced convenience, and better understanding of ill-understood observations such as brain volume loss.
Project description:To review the amyloid hypothesis as the predominant mechanistic theory of Alzheimer's disease and update the status of new disease-modifying, anti-amyloid treatments in clinical development.Governmental Web sites and those of professional Alzheimer's disease associations and drug manufacturers were searched for new drugs in development. An English-language search of PubMed (January 2003-January 2006) was conducted using the search terms Alzheimer's disease and amyloid hypothesis and each of the drugs and immunotherapies from the 4 identified classes of anti-amyloid, disease-modifying therapies.Studies and reports were selected on the basis of recent publication, adequate methodology, and completeness of data.Immunotherapy, ?-secretase inhibitors, selective neurotoxic aggregated 42-amino acid peptide subspecies of amyloid ? (A???)-lowering agents (tarenflurbil), inhibitors of amyloid aggregation (tramiprosate), and statins show promise in clinical trials. Safety remains an important factor. Disease-modifying drugs that specifically target the amyloid cascade and do not interact with essential biological pathways are expected to possess a lower rate of unintended adverse events.Agents that selectively target A??? production (e.g., tarenflurbil), block A? aggregation (e.g., tramiprosate), or enhance alpha-secretase activity (statins) offer hope for disease modification and prevention and do not appear to interfere with other biological pathways.Discovery of safe and effective disease-modifying therapies will usher in a new age of Alzheimer's disease treatment.
Project description:The majority of putative disease-modifying treatments in development for Alzheimer's disease are directed against the amyloid-β (Aβ) peptide. Among the anti-Aβ therapeutic approaches, the most extensively developed is immunotherapy-specifically, passive immunization through administration of exogenous monoclonal antibodies (mAbs). Although testing of mAbs has been fraught with failure and confusing results, the experience gained from these trials has provided important clues for better treatments. This review summarizes the experience to date with anti-Aβ mAbs to enter clinical trials for Alzheimer's disease and examines the evidence for clinical efficacy and the major problems with safety-i.e., amyloid-related imaging abnormalities. As mAbs differ considerably with regard to their epitopes and the conformations of Aβ that they recognize (monomers, oligomers, protofibrils, fibrils), the consequences of targeting different species are also considered. An often-cited explanation for the failure of anti-Aβ mAb trials is that they are set too late in the disease process. New trials are indeed evaluating treatments at prodromal and preclinical stages. We should expect to see additional studies of presymptomatic Alzheimer's disease to join the ongoing prevention trials, for which mAbs continue to serve as the mainstay.
Project description:Transgenic animals were engineered to express human amyloid peptide controlled by a muscle-specific, heat-inducible promoter. At low temperatures (16°C) Abeta expression is minimal, while at higher temperatures (20-25°C) Abeta accummulates in large quantities and causes paralysis. GFP- and GFP::degron (a toxic aggregating GFP mutant)-expressing animals were used as controls. Animals were grown at 16°C till early 3rd larval stage and then upshifted to 25°C. Animals were harvested at the time of upshift (T0), and every 4 hours later until 20 hours postupshift (T4-T20).