Unknown

Dataset Information

0

An SPNS1-dependent lysosomal lipid transport pathway that enables cell survival under choline limitation.


ABSTRACT: Lysosomes degrade macromolecules and recycle their nutrient content to support cell function and survival. However, the machineries involved in lysosomal recycling of many nutrients remain to be discovered, with a notable example being choline, an essential metabolite liberated via lipid degradation. Here, we engineered metabolic dependency on lysosome-derived choline in pancreatic cancer cells to perform an endolysosome-focused CRISPR-Cas9 screen for genes mediating lysosomal choline recycling. We identified the orphan lysosomal transmembrane protein SPNS1 as critical for cell survival under choline limitation. SPNS1 loss leads to intralysosomal accumulation of lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). Mechanistically, we reveal that SPNS1 is a proton gradient-dependent transporter of LPC species from the lysosome for their re-esterification into phosphatidylcholine in the cytosol. Last, we establish that LPC efflux by SPNS1 is required for cell survival under choline limitation. Collectively, our work defines a lysosomal phospholipid salvage pathway that is essential under nutrient limitation and, more broadly, provides a robust platform to deorphan lysosomal gene function.

SUBMITTER: Scharenberg SG 

PROVIDER: S-EPMC10115416 | biostudies-literature | 2023 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

An SPNS1-dependent lysosomal lipid transport pathway that enables cell survival under choline limitation.

Scharenberg Samantha G SG   Dong Wentao W   Ghoochani Ali A   Nyame Kwamina K   Levin-Konigsberg Roni R   Krishnan Aswini R AR   Rawat Eshaan S ES   Spees Kaitlyn K   Bassik Michael C MC   Abu-Remaileh Monther M  

Science advances 20230419 16


Lysosomes degrade macromolecules and recycle their nutrient content to support cell function and survival. However, the machineries involved in lysosomal recycling of many nutrients remain to be discovered, with a notable example being choline, an essential metabolite liberated via lipid degradation. Here, we engineered metabolic dependency on lysosome-derived choline in pancreatic cancer cells to perform an endolysosome-focused CRISPR-Cas9 screen for genes mediating lysosomal choline recycling.  ...[more]

Similar Datasets

| S-EPMC9546575 | biostudies-literature
| S-EPMC11667069 | biostudies-literature
2024-10-25 | GSE246850 | GEO
2024-06-12 | GSE240323 | GEO
| S-EPMC4195762 | biostudies-literature
| S-EPMC9908577 | biostudies-literature
| S-EPMC4495001 | biostudies-literature
| S-EPMC3568626 | biostudies-literature
| S-EPMC6610721 | biostudies-literature
| S-EPMC10203878 | biostudies-literature