Unknown

Dataset Information

0

Self-healing perovskite solar cells based on copolymer-templated TiO2 electron transport layer.


ABSTRACT: Inorganic hole-transport materials (HTMs) such as copper indium disulfide (CIS) have been applied in perovskite solar cells (PSCs) to improve the poor stability of the conventional Spiro-based PSCs. However, CIS-PSCs' main drawback is their lower efficiency than Spiro-PSCs. In this work, copolymer-templated TiO2 (CT-TiO2) structures have been used as an electron transfer layer (ETL) to improve the photocurrent density and efficiency of CIS-PSCs. Compared to the conventional random porous TiO2 ETLs, copolymer-templated TiO2 ETLs with a lower refractive index improve the transmittance of input light into the cell and therefore enhance the photovoltaic performance. Interestingly, a large number of surface hydroxyl groups on the CT-TiO2 induce a self-healing effect in perovskite. Thus, they provide superior stability in CIS-PSC. The fabricated CIS-PSC presents a conversion efficiency of 11.08% (Jsc = 23.35 mA/cm2, Voc = 0.995, and FF = 0.477) with a device area of 0.09 cm2 under 100 mW/cm2. Moreover, these unsealed CIS-PSCs retained 100% of their performance after aging tests for 90 days under ambient conditions and even increased from 11.08 to 11.27 over time due to self-healing properties.

SUBMITTER: Lalpour N 

PROVIDER: S-EPMC10115803 | biostudies-literature | 2023 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Self-healing perovskite solar cells based on copolymer-templated TiO<sub>2</sub> electron transport layer.

Lalpour Nakisa N   Mirkhani Valiollah V   Keshavarzi Reza R   Moghadam Majid M   Tangestaninejad Shahram S   Mohammadpoor-Baltork Iraj I   Gao Peng P  

Scientific reports 20230419 1


Inorganic hole-transport materials (HTMs) such as copper indium disulfide (CIS) have been applied in perovskite solar cells (PSCs) to improve the poor stability of the conventional Spiro-based PSCs. However, CIS-PSCs' main drawback is their lower efficiency than Spiro-PSCs. In this work, copolymer-templated TiO<sub>2</sub> (CT-TiO<sub>2</sub>) structures have been used as an electron transfer layer (ETL) to improve the photocurrent density and efficiency of CIS-PSCs. Compared to the conventional  ...[more]

Similar Datasets

| S-EPMC5867052 | biostudies-literature
| S-EPMC5115377 | biostudies-literature
| S-EPMC9055715 | biostudies-literature
| S-EPMC6925098 | biostudies-literature
| S-EPMC5644234 | biostudies-literature
| S-EPMC5241255 | biostudies-literature
| S-EPMC9079622 | biostudies-literature
| S-EPMC7592386 | biostudies-literature
| S-EPMC10790978 | biostudies-literature
| S-EPMC10819156 | biostudies-literature