Project description:To safely re-open economies and prevent future outbreaks, rapid, frequent, point-of-need, SARS-CoV-2 diagnostic testing is necessary. However, existing field-deployable COVID-19 testing methods require the use of uncomfortable swabs and trained providers in PPE, while saliva-based methods must be transported to high complexity laboratories for testing. Here, we report the development and clinical validation of High-Performance Loop-mediated isothermal Amplification (HP-LAMP), a rapid, saliva-based, SARS-CoV-2 test with a limit of detection of 1.4 copies of virus per µl of saliva and a sensitivity and specificity with clinical samples of > 96%, on par with traditional RT-PCR based methods using swabs, but can deliver results using only a single fluid transfer step and simple heat block. Testing of 120 patient samples in 40 pools comprised of 5 patient samples each with either all negative or a single positive patient sample was 100% accurate. Thus, HP-LAMP may enable rapid and accurate results in the field using saliva, without need of a high-complexity laboratory.
Project description:BackgroundRapid diagnostic testing for SARS-Cov-2 antigens is used to combat the ongoing pandemic. In this study we aimed to compare two RDTs, the SD Biosensor Q SARS-CoV-2 Rapid Antigen Test (Roche) and the Panbio COVID-19 Ag Rapid Test (Abbott), against rRT-PCR.MethodsWe included 2,215 all-comers at a diagnostic center between February 1 and March 31, 2021. rRT-PCR-positive samples were examined for SARS-CoV-2 variants.FindingsThree hundred and thirty eight participants (15%) were rRT-PCR-positive for SARS-CoV-2. The sensitivities of Roche-RDT and Abbott-RDT were 60.4 and 56.8% (P < 0.0001) and specificities 99.7% and 99.8% (P = 0.076). Sensitivity inversely correlated with rRT-PCR-Ct values. The RDTs had higher sensitivities in individuals referred by treating physicians (79.5%, 78.7%) than in those referred by health departments (49.5%, 44.3%) or tested for other reasons (50%, 45.8%), in persons without any comorbidities (74.4%, 71%) compared to those with comorbidities (38.2%, 34.4%), in individuals with COVID-19 symptoms (75.2%, 74.3%) compared to those without (31.9%, 23.3%), and in the absence of SARS-CoV-2 variants (87.7%, 84%) compared to Alpha variant carriers (77.1%, 72.3%). If 10,000 symptomatic individuals are tested of which 500 are truly positive, the RDTs would generate 38 false-positive and 124 false-negative results. If 10,000 asymptomatic individuals are tested, including 50 true positives, 18 false-positives and 34 false-negatives would be generated.InterpretationThe sensitivities of the two RDTs for asymptomatic SARS-CoV-2 carriers are unsatisfactory. Their widespread use may not be effective in the ongoing SARS-CoV-2 pandemic. The virus genotype influences the sensitivity of the two RDTs. RDTs should be evaluated for different SARS-CoV-2 variants.
Project description:BackgroundConsidering the possibility of nasal self-sampling and the ease of use in performing SARS-CoV-2 antigen-detecting rapid diagnostic tests (Ag-RDTs), self-testing is a feasible option.ObjectiveThe goal of this study was a head-to-head comparison of diagnostic accuracy of patient self-testing with professional testing using a SARS-CoV-2 Ag-RDT.Study designWe performed a manufacturer-independent, prospective diagnostic accuracy study of nasal mid-turbinate self-sampling and self-testing with symptomatic adults using a WHO-listed SARS-CoV-2 Ag-RDT. Procedures were observed without intervention. For comparison, Ag-RDTs with nasopharyngeal sampling were professionally performed. Estimates of agreement, sensitivity, and specificity relative to RT-PCR on a combined oro-/nasopharyngeal sample were calculated. Feasibility was evaluated by observer and participant questionnaires.ResultsAmong 146 symptomatic adults, 40 (27.4%) were RT-PCR-positive for SARS-CoV-2. Sensitivity with self-testing was 82.5% (33/40; 95% CI 68.1-91.3), and 85.0% (34/40; 95% CI 70.9-92.9) with professional testing. At high viral load (≥7.0 log10 SARS-CoV-2 RNA copies/ml), sensitivity was 96.6% (28/29; 95% CI 82.8-99.8) for both self- and professional testing. Deviations in sampling and testing were observed in 25 out of the 40 PCR-positives. Most participants (80.9%) considered the Ag-RDT as easy to perform.ConclusionLaypersons suspected for SARS-CoV-2 infection were able to reliably perform the Ag-RDT and test themselves. Procedural errors might be reduced by refinement of the instructions for use or the product design/procedures. Self-testing allows more wide-spread and frequent testing. Paired with the appropriate information of the public about the benefits and risks, self-testing may have significant impact on the pandemic.
Project description:The implementation of rapid diagnostic tests (RDTs) may enhance the efficiency of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing, as RDTs are widely accessible and easy to use. The aim of this study was to evaluate the performance of a diagnosis strategy based on a combination of antigen and immunoglobulin M (IgM) or immunoglobulin G (IgG) serological RDTs. Plasma and nasopharyngeal samples were collected between 14 March and 11 April 2020 at hospital admission from 45 patients with reverse transcription polymerase chain reaction (RT-PCR) confirmed COVID-19 and 20 negative controls. SARS-CoV-2 antigen (Ag) was assessed in nasopharyngeal swabs using the Coris Respi-Strip. For IgM/IgG detection, SureScreen Diagnostics and Szybio Biotech RDTs were used in addition to laboratory assays (Abbott Alinity i SARS-CoV-2 IgG and Theradiag COVID-19 IgM enzyme-linked immunosorbent assay). Using the Ag RDT, 13 out of 45 (29.0%) specimens tested positive, the sensitivity was 87.0% for cycle threshold (Ct ) values ≤25% and 0% for Ct values greater than 25. IgG detection was associated with high Ct values and the amount of time after the onset of symptoms. The profile of isolated IgM on RDTs was more frequently observed during the first and second week after the onset of symptoms. The combination of Ag and IgM/IgG RDTs enabled the detection of up to 84.0% of COVID-19 confirmed cases at hospital admission. Antigen and antibody-based RDTs showed suboptimal performances when used alone. However when used in combination, they are able to identify most COVID-19 patients admitted in an emergency department.
Project description:The SARS-CoV-2 virus is continuously evolving, with appearance of new variants characterized by multiple genomic mutations, some of which can affect functional properties, including infectivity, interactions with host immunity, and disease severity. The rapid spread of new SARS-CoV-2 variants has highlighted the urgency to trace the virus evolution, to help limit its diffusion, and to assess effectiveness of containment strategies. We propose here a PCR-based rapid, sensitive and low-cost allelic discrimination assay panel for the identification of SARS-CoV-2 genotypes, useful for detection in different sample types, such as nasopharyngeal swabs and wastewater. The tests carried out demonstrate that this in-house assay, whose results were confirmed by SARS-CoV-2 whole-genome sequencing, can detect variations in up to 10 viral genome positions at once and is specific and highly sensitive for identification of all tested SARS-CoV-2 clades, even in the case of samples very diluted and of poor quality, particularly difficult to analyze.
Project description:In response to the COVID-19 pandemic, the National Institute of Standards and Technology released a synthetic RNA material for SARS-CoV-2 in June 2020. The goal was to rapidly produce a material to support molecular diagnostic testing applications. This material, referred to as Research Grade Test Material 10169, was shipped free of charge to laboratories across the globe to provide a non-hazardous material for assay development and assay calibration. The material consisted of two unique regions of the SARS-CoV-2 genome approximately 4 kb nucleotides in length. The concentration of each synthetic fragment was measured using RT-dPCR methods and confirmed to be compatible with RT-qPCR methods. In this report, the preparation, stability, and limitations of this material are described.