Project description:The holotype of Junggarsuchus sloani, from the Shishugou Formation (early Late Jurassic) of Xinjiang, China, consists of a nearly complete skull and the anterior half of an articulated skeleton, including the pectoral girdles, nearly complete forelimbs, vertebral column, and ribs. Here, we describe its anatomy and compare it to other early diverging crocodylomorphs, based in part on CT scans of its skull and that of Dibothrosuchus elaphros from the Early Jurassic of China. Junggarsuchus shares many features with a cursorial assemblage of crocodylomorphs, informally known as "sphenosuchians," whose relationships are poorly understood. However, it also displays several derived crocodyliform features that are not found among most "sphenosuchians." Our phylogenetic analysis corroborates the hypothesis that Junggarsuchus is closer to Crocodyliformes, including living crocodylians, than are Dibothrosuchus and Sphenosuchus, but not as close to crocodyliforms as Almadasuchus and Macelognathus, and that the "Sphenosuchia" are a paraphyletic assemblage. D. elaphros and Sphenosuchus acutus are hypothesized to be more closely related to Crocodyliformes than are the remaining non-crocodyliform crocodylomorphs, which form several smaller groups but are largely unresolved.
Project description:The order Nymphaeales, consisting of three families with a record of eight genera, has gained significant interest from botanists, probably due to its position as a basal angiosperm. The phylogenetic relationships within the order have been well studied; however, a few controversial nodes still remain in the Nymphaeaceae. The position of the Nuphar genus and the monophyly of the Nymphaeaceae family remain uncertain. This study adds to the increasing number of the completely sequenced plastid genomes of the Nymphaeales and applies a large chloroplast gene data set in reconstructing the intergeneric relationships within the Nymphaeaceae. Five complete chloroplast genomes were newly generated, including a first for the monotypic Euryale genus. Using a set of 66 protein-coding genes from the chloroplast genomes of 17 taxa, the phylogenetic position of Nuphar was determined and a monophyletic Nymphaeaceae family was obtained with convincing statistical support from both partitioned and unpartitioned data schemes. Although genomic comparative analyses revealed a high degree of synteny among the chloroplast genomes of the ancient angiosperms, key minor variations were evident, particularly in the contraction/expansion of the inverted-repeat regions and in RNA-editing events. Genome structure, and gene content and arrangement were highly conserved among the chloroplast genomes. The intergeneric relationships defined in this study are congruent with those inferred using morphological data.
Project description:Whole plastid genomes are being sequenced rapidly from across the green plant tree of life, and phylogenetic analyses of these are increasing resolution and support for relationships that have varied among or been unresolved in earlier single- and multi-gene studies. Pooideae, the cool-season grass lineage, is the largest of the 12 grass subfamilies and includes important temperate cereals, turf grasses and forage species. Although numerous studies of the phylogeny of the subfamily have been undertaken, relationships among some 'early-diverging' tribes conflict among studies, and some relationships among subtribes of Poeae have not yet been resolved. To address these issues, we newly sequenced 25 whole plastomes, which showed rearrangements typical of Poaceae. These plastomes represent 9 tribes and 11 subtribes of Pooideae, and were analysed with 20 existing plastomes for the subfamily. Maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) robustly resolve most deep relationships in the subfamily. Complete plastome data provide increased nodal support compared with protein-coding data alone at nodes that are not maximally supported. Following the divergence of Brachyelytrum, Phaenospermateae, Brylkinieae-Meliceae and Ampelodesmeae-Stipeae are the successive sister groups of the rest of the subfamily. Ampelodesmeae are nested within Stipeae in the plastome trees, consistent with its hybrid origin between a phaenospermatoid and a stipoid grass (the maternal parent). The core Pooideae are strongly supported and include Brachypodieae, a Bromeae-Triticeae clade and Poeae. Within Poeae, a novel sister group relationship between Phalaridinae and Torreyochloinae is found, and the relative branching order of this clade and Aveninae, with respect to an Agrostidinae-Brizinae clade, are discordant between MP and ML/BI trees. Maximum likelihood and Bayesian analyses strongly support Airinae and Holcinae as the successive sister groups of a Dactylidinae-Loliinae clade.
Project description:PurposeAlzheimer's disease (AD) dementia may not be a single disease entity. Early-onset AD (EOAD) and late-onset AD (LOAD) have been united under the same eponym of AD until now, but disentangling the heterogeneity according to the age of sonset has been a major tenet in the field of AD research.Materials and methodsNinety-nine patients with AD (EOAD, n=54; LOAD, n=45) and 66 cognitively normal controls completed both [18F]THK5351 and [18F]flutemetamol (FLUTE) positron emission tomography scans along with structural magnetic resonance imaging and detailed neuropsychological tests.ResultsEOAD patients had higher THK retention in the precuneus, parietal, and frontal lobe, while LOAD patients had higher THK retention in the medial temporal lobe. Intravoxel correlation analyses revealed that EOAD presented narrower territory of local FLUTE-THK correlation, while LOAD presented broader territory of correlation extending to overall parieto-occipito-temporal regions. EOAD patients had broader brain areas which showed significant negative correlations between cortical thickness and THK retention, whereas in LOAD, only limited brain areas showed significant correlation with THK retention. In EOAD, most of the cognitive test results were correlated with THK retention. However, a few cognitive test results were correlated with THK retention in LOAD.ConclusionLOAD seemed to show gradual increase in tau and amyloid, and those two pathologies have association to each other. On the other hand, in EOAD, tau and amyloid may develop more abruptly and independently. These findings suggest LOAD and EOAD may have different courses of pathomechanism.
Project description:Living crocodylomorphs have an ossified secondary palate with a posteriorly positioned choana that enables their semi-aquatic, predatory ecology. In contrast, the earliest branching members of Crocodylomorpha have an open palate with anteriorly positioned choanae. The evolution of an ossified secondary palate and a posteriorly positioned choana features strongly in hypotheses of broad-scale phylogenetic relationships within Crocodylomorpha. Renewed investigations into palatal morphology among extinct members of the clade show surprising variability in the anatomy of the palate, with at least one and potentially a second independent occurrence of "eusuchian-type" palate outside of Eusuchia. Understanding the trajectory of crocodylomorph palatal evolution is, therefore, a key to inferring crocodylomorph interrelationships and ecomorphology. To document early-branching crocodylomorph palatal anatomy, we developed an anatomical comparative dataset using computed tomography scan data and literature, comprising 12 early-branching crocodylomorph taxa. To understand discrete phenotypic changes in palatal structure, we compiled a phylogenetically broadly sampled character-taxon matrix from the existing literature, and revised its palatal characters, adding 10 new palatal characters. Our comparative anatomical investigations allow us to propose an adapted hypothesis for the closure of the palate and the posterior migration of the choana. Our phylogenetic findings corroborate previous research showing that non-crocodyliform crocodylomorphs ("sphenosuchians") are paraphyletic, with the exclusion of the clade Hallopodidae. Non-mesoeucrocodylian crocodyliforms ("protosuchians") are paraphyletic, but form three monophyletic clades: Notochampsoidea, Shartegosuchoidea, and Gobiosuchidae. We find a potential association between secondary palate development and dietary shifts, particularly with regard to hypothesized origins of herbivory.
Project description:The secretome, the complement of extracellular proteins, is a reflection of the interaction of an organism with its host or substrate, thus a determining factor for the organism's fitness and competitiveness. Hence, the secretome impacts speciation and organismal evolution. The zoosporic Chytridiomycota, Blastocladiomycota, Neocallimastigomycota, and Cryptomycota represent the earliest diverging lineages of the Fungal Kingdom. The review describes the enzyme compositions of these zoosporic fungi, underscoring the enzymes involved in biomass degradation. The review connects the lifestyle and substrate affinities of the zoosporic fungi to the secretome composition by examining both classical phenotypic investigations and molecular/genomic-based studies. The carbohydrate-active enzyme profiles of 19 genome-sequenced species are summarized. Emphasis is given to recent advances in understanding the functional role of rumen fungi, the basis for the devastating chytridiomycosis, and the structure of fungal cellulosome. The approach taken by the review enables comparison of the secretome enzyme composition of anaerobic versus aerobic early-diverging fungi and comparison of enzyme portfolio of specialized parasites, pathogens, and saprotrophs. Early-diverging fungi digest most major types of biopolymers: cellulose, hemicellulose, pectin, chitin, and keratin. It is thus to be expected that early-diverging fungi in its entirety represents a rich and diverse pool of secreted, metabolic enzymes. The review presents the methods used for enzyme discovery, the diversity of enzymes found, the status and outlook for recombinant production, and the potential for applications. Comparative studies on the composition of secretome enzymes of early-diverging fungi would contribute to unraveling the basal lineages of fungi.
Project description:For years, the notion of chin ptosis was somehow integrated with the concept of witch's chin. That was a mistake on many levels because chin droop has four major causes, all different and with some overlap. With this article, the surgeon can quickly diagnose which type and which therapeutic modality would work best. In some cases the problem is a simple fix, in others the droop can only be stabilized, and in the final two, definite corrective procedures are available. Of note, in certain situations two types of chin ptosis may overlap because both the patient and the surgeon may each contribute to the problems. For example, in dynamic ptosis, a droop that occurs with smile in the unoperated patient can be exacerbated and further produced by certain surgical methods also. This paper classifies the variations of the problems and explains the anatomy with the final emphasis on long-term surgical correction, well described herein. This article is the ninth on this subject and a review of them all would be helpful (greatly) for understanding the enigmas of the lower face.
Project description:The sauropod dinosaur "Pelorosaurus" becklesii was named in 1852 on the basis of an associated left humerus, ulna, radius and skin impression from the Early Cretaceous (Berriasian-Valanginian) Hastings Beds Group, near Hastings, East Sussex, southeast England, United Kingdom. The taxonomy and nomenclature of this specimen have a complex history, but most recent workers have agreed that "P." becklesii represents a distinct somphospondylan (or at least a titanosauriform) and is potentially the earliest titanosaur body fossil from Europe or even globally. The Hastings specimen is distinct from the approximately contemporaneous Pelorosaurus conybeari from Tilgate Forest, West Sussex. "P." becklesii can be diagnosed on the basis of five autapomorphies, such as: a prominent anteriorly directed process projecting from the anteromedial corner of the distal humerus; the proximal end of the radius is widest anteroposteriorly along its lateral margin; and the unique combination of a robust ulna and slender radius. The new generic name Haestasaurus is therefore erected for "P." becklesii. Three revised and six new fore limb characters (e.g. the presence/absence of condyle-like projections on the posterodistal margin of the radius) are discussed and added to three cladistic data sets for Sauropoda. Phylogenetic analysis confirms that Haestasaurus becklesii is a macronarian, but different data sets place this species either as a non-titanosauriform macronarian, or within a derived clade of titanosaurs that includes Malawisaurus and Saltasauridae. This uncertainty is probably caused by several factors, including the incompleteness of the Haestasaurus holotype and rampant homoplasy in fore limb characters. Haestasaurus most probably represents a basal macronarian that independently acquired the robust ulna, enlarged olecranon, and other states that have previously been regarded as synapomorphies of clades within Titanosauria. There is growing evidence that basal macronarian taxa survived into the Early Cretaceous of Europe and North America.
Project description:Knowledge regarding the early evolution within the dinosaurian clade Ankylopollexia drastically increased over the past two decades, in part because of an increase in described taxa from the Early Cretaceous of North America. These advances motivated the recent completion of extensive preparation and conservation work on the holotype and only known specimen of Dakotadon lakotaensis, a basal ankylopollexian from the Lakota Formation of South Dakota. That specimen (SDSM 8656) preserves a partial skull, lower jaws, a single dorsal vertebra, and two caudal vertebrae. That new preparation work exposed several bones not included in the original description and revealed that other bones were previously misidentified. The presence of extensive deformation in areas of the skull is also noted that influenced inaccuracies in prior descriptions and reconstructions of this taxon. In addition to providing an extensive re-description of D. lakotaensis, this study reviews previously proposed diagnoses for this taxon, identifies two autapomorphies, and provides an extensive differential diagnosis. Dakotadon lakotaensis is distinct from the only other ankylopollexian taxon known from the Lakota Formation, Osmakasaurus depressus, in the presence of two prominent, anteroposteriorly oriented ridges on the ventral surfaces of the caudal vertebrae, the only overlapping material preserved between these taxa. The systematic relationships of D. lakotaensis are evaluated using both the parsimony and posterior probability optimality criteria, with both sets of analyses recovering D. lakotaensis as a non-hadrosauriform ankylopollexian that is more closely related to taxa from the Early Cretaceous (e.g., Iguanacolossus, Hippodraco, and Theiophytalia) than to more basally situated taxa from the Jurassic (e.g., Camptosaurus, Uteodon). This taxonomic work is supplemented by field work that relocated the type locality, confirming its provenance from unit L2 (lower Fuson Member equivalent) of the Lakota Formation. Those data, combined with recently revised ages for the members of the Lakota Formation based on charophyte and ostracod biostratigraphy, constrain the age of this taxon to the late Valanginian to early Barremian.
Project description:The taxonomy and evolutionary history of Sophora L., a genus with high economic and medicinal value, remain uncertain due to the absence of genetic resource (especially in China) and low polymorphism of molecular markers. Our aim was to elucidate the molecular evolution and phylogenetic relationships in chloroplast genomes of Sophora species in the early-diverging legume subfamily Papilionoideae (Fabaceae). We reported nine Sophora chloroplast genome from China using Illumina sequencing. We performed a series of analyses with previously published genomes of Sophora species to investigate their genomic characteristics, identified simple sequence repeats, large repeat sequences, tandem repeats, and highly polymorphic loci. The genomes were 152,953-158,087 bp in length, and contained 111-113 unique genes, including 76-78 protein coding, 31 tRNA, and 4 rRNA. The expansion of inverted repeat boundary of Sophora resulted in rps12 entering into the LSC region and loss of trnT-CGU gene in some species. Also, we found an approximately 23 kb inversion between trnC-GCA and trnF-GAA within the genus. In addition, we identified seven highly polymorphic loci (pi (π) > 0.035) suitable for inferring the phylogeny of Sophora species. Among these, three regions also co-occurred with large repeat sequences and support use of repeats as a proxy for the identification of polymorphic loci. Based on whole chloroplast genome and protein-coding sequences data-set, a well-supported phylogenetic tree of Sophora and related taxa showed that this genus is monophyletic, but sect. Disamaea and sect. Sophora, are incongruent with traditional taxonomic classifications based on fruit morphology. Our finding provides significant genetic resources to support further investigation into the phylogenetic relationship and evolution of the genus Sophora.