Project description:Prime editing enables search-and-replace genome editing but is limited by low editing efficiency. We present a high-throughput approach, the Peptide Self-Editing sequencing assay (PepSEq), to measure how fusion of 12,000 85-amino acid peptides influences prime editing efficiency. We show that peptide fusion can enhance prime editing, prime-enhancing peptides combine productively, and a top dual peptide-prime editor increases prime editing significantly in multiple cell lines across dozens of target sites. Top prime-enhancing peptides function by increasing translation efficiency and serve as broadly useful tools to improve prime editing efficiency.
Project description:Prime editing enables the installation of virtually any combination of point mutations, small insertions or small deletions in the DNA of living cells. A prime editing guide RNA (pegRNA) directs the prime editor protein to the targeted locus and also encodes the desired edit. Here we show that degradation of the 3' region of the pegRNA that contains the reverse transcriptase template and the primer binding site can poison the activity of prime editing systems, impeding editing efficiency. We incorporated structured RNA motifs to the 3' terminus of pegRNAs that enhance their stability and prevent degradation of the 3' extension. The resulting engineered pegRNAs (epegRNAs) improve prime editing efficiency 3-4-fold in HeLa, U2OS and K562 cells and in primary human fibroblasts without increasing off-target editing activity. We optimized the choice of 3' structural motif and developed pegLIT, a computational tool to identify non-interfering nucleotide linkers between pegRNAs and 3' motifs. Finally, we showed that epegRNAs enhance the efficiency of the installation or correction of disease-relevant mutations.
Project description:Prime editing is a new CRISPR-based, genome-editing technology that relies on the prime editor (PE), a fusion protein of Cas9-nickase and M-MLV reverse transcriptase (RT), and a prime editing guide RNA (pegRNA) that serves both to target PE to the desired genomic locus and to carry the edit to be introduced. Here, we make advancements to the RT moiety to improve prime editing efficiencies and truncations to mitigate issues with adeno-associated virus (AAV) viral vector size limitations, which currently do not support efficient delivery of the large prime editing components. These efforts include RT variant screening, codon optimization, and PE truncation by removal of the RNase H domain and further trimming. This led to a codon-optimized and size-minimized PE that has an expression advantage (1.4-fold) and size advantage (621 bp shorter). In addition, we optimize the split intein PE system and identify Rma-based Cas9 split sites (573-574 and 673-674) that combined with the truncated PE delivered by dual AAVs result in superior AAV titer and prime editing efficiency. We also show that this minimized PE gives rise to superior lentiviral vector titers (46-fold) over the regular PE in an all-in-one PE lentiviral vector. We finally deliver the minimized PE to mouse liver by dual AAV8 vectors and show up to 6% precise editing of the PCSK9 gene, thereby demonstrating the value of this truncated split PE system for in vivo applications.
Project description:Prime editor (PE) is a precise genome-editing tool capable of all possible base conversions, as well as insertions and deletions without DSBs or donor DNA. The efficient delivery of PE in vivo is critical for realizing its full potential in disease modeling and therapeutic correction. Although PE has been divided into two halves and delivered using dual adeno-associated viruses (AAVs), editing efficiency at different gene loci varies among split sites, and efficient split sites within Cas9 nickase are limited. In this study, by screening multiple split sites, we demonstrated a series of efficient split site when delivering PE by dual-AAV. Additionally, we utilized a feature reported by others recently that RNase could be detached from the Cas9n and designed split sites in the first half of Cas9n. To test the editing efficiency in vivo, a novel dual-AAV split-ePE3 was packaged in AAV9 and delivered via tail vein injection in mice, achieving 24.4% precise genome editing 3 weeks post-injection. Our findings establish an alternative split-PE architecture that could achieve robust gene editing efficiency, facilitating the potential utility both in model organisms and as a therapeutic modality.
Project description:Prime editor (PE) is a precise genome-editing tool capable of all possible base conversions, as well as insertions and deletions without DSBs or donor DNA. The efficient delivery of PE in vivo is critical for realizing its full potential in disease modeling and therapeutic correction. Although PE has been divided into two halves and delivered using dual adeno-associated viruses (AAVs), editing efficiency at different gene loci varies among split sites, and efficient split sites within Cas9 nickase are limited. In this study, by screening multiple split sites, we demonstrated a series of efficient split site when delivering PE by dual-AAV. Additionally, we utilized a feature reported by others recently that RNase could be detached from the Cas9n and designed split sites in the first half of Cas9n. To test the editing efficiency in vivo, a novel dual-AAV split-ePE3 was packaged in AAV9 and delivered via tail vein injection in mice, achieving 24.4% precise genome editing 3 weeks post-injection. Our findings establish an alternative split-PE architecture that could achieve robust gene editing efficiency, facilitating the potential utility both in model organisms and as a therapeutic modality.
Project description:CRISPR prime editing (PE) requires a Cas9 nickase-reverse transcriptase fusion protein (known as PE2) and a prime editing guide RNA (pegRNA), an extended version of a standard guide RNA (gRNA) that both specifies the intended target genomic sequence and encodes the desired genetic edit. Here we show that sequence complementarity between the 5' and the 3' regions of a pegRNA can negatively impact its ability to complex with Cas9, thereby potentially reducing PE efficiency. We demonstrate this limitation can be overcome by a simple pegRNA refolding procedure, which improved ribonucleoprotein-mediated PE efficiencies in zebrafish embryos by up to nearly 25-fold. Further gains in PE efficiencies of as much as 6-fold could also be achieved by introducing point mutations designed to disrupt internal interactions within the pegRNA. Our work defines simple strategies that can be implemented to improve the efficiency of PE.
Project description:Prime editor (PE), a new genome editing tool, can generate all 12 possible base-to-base conversions, insertion, and deletion of short fragment DNA. PE has the potential to correct the majority of known human genetic disease-related mutations. Adeno-associated viruses (AAVs), the safe vector widely used in clinics, are not capable of delivering PE (∼6.3 kb) in a single vector because of the limited loading capacity (∼4.8 kb). To accommodate the loading capacity of AAVs, we constructed four split-PE (split-PE994, split-PE1005, split-PE1024, and split-PE1032) using Rma intein (Rhodothermus marinus). With the use of a GFP-mutated reporter system, PE reconstituting activities were screened, and two efficient split-PEs (split-PE1005 and split-PE1024) were identified. We then demonstrated that split-PEs delivered by dual-AAV1, especially split-PE1024, could mediate base transversion and insertion at four endogenous sites in human cells. To test the performance of split-PE in vivo, split-PE1024 was then delivered into the adult mouse retina by dual-AAV8. We demonstrated successful editing of Dnmt1 in adult mouse retina. Our study provides a new method to deliver PE to adult tissue, paving the way for in vivo gene-editing therapy using PE.
Project description:Prime editing enables precise and efficient genome editing, but its efficacy is hindered by pegRNA's 3' extension, forming secondary structures due to high complementarity with the protospacer. The continuous presence of the prime editing system also leads to unintended indel formation, raising safety concerns for therapeutic applications. To address these challenges, we develop a mismatched pegRNA (mpegRNA) strategy that introduces mismatched bases into the pegRNA protospacer, reducing complementarity and secondary structure formation, and preventing sustained activity. Our findings show that mpegRNA enhances editing efficiency by up to 2.3 times and reduces indel levels by 76.5% without compromising performance. Combining mpegRNA with epegRNA further increases efficiency up to 14-fold, or 2.4-fold in PE4max/PE5max systems, underscoring its potential in research and therapy. AlphaFold 3 analysis suggests that the optimal mpegRNA structure contributes significantly to improved editing outcomes. Overall, mpegRNA advances prime editing technology, improving efficiency while reducing indels.